- Gather new textual data (with dates) regarding a domain (topic) of your choice from a social media of your choice.
- Do the analysis of the data in terms of the relevance of the content and link structure as studied and mention in the report.
- Also, measure the effectiveness of your methodology by evaluating the method you have used and mention in the report.
- Construct a knowledge graph from the data that you have gathered.
- Mention all the methods you have used to construct the knowledge graph.
- Your analysis of the knowledge graph construction methods should be mentioned in the report, and the actual knowledge graph also should be submitted.
https://docs.twitterapi.io/api-reference/endpoint/tweet_advanced_search
import requests
url = "https://api.twitterapi.io/twitter/tweet/advanced_search"
headers = {"X-API-Key": "<api-key>"}
response = requests.get(url, headers=headers)
print(response.json())200 response
{
"tweets": [
{
"type": "tweet",
"id": "<string>",
"url": "<string>",
"text": "<string>",
"source": "<string>",
"retweetCount": 123,
"replyCount": 123,
"likeCount": 123,
"quoteCount": 123,
"viewCount": 123,
"createdAt": "<string>",
"lang": "<string>",
"bookmarkCount": 123,
"isReply": true,
"inReplyToId": "<string>",
"conversationId": "<string>",
"displayTextRange": [
123
],
"inReplyToUserId": "<string>",
"inReplyToUsername": "<string>",
"author": {
"type": "user",
"userName": "<string>",
"url": "<string>",
"id": "<string>",
"name": "<string>",
"isBlueVerified": true,
"verifiedType": "<string>",
"profilePicture": "<string>",
"coverPicture": "<string>",
"description": "<string>",
"location": "<string>",
"followers": 123,
"following": 123,
"canDm": true,
"createdAt": "<string>",
"favouritesCount": 123,
"hasCustomTimelines": true,
"isTranslator": true,
"mediaCount": 123,
"statusesCount": 123,
"withheldInCountries": [
"<string>"
],
"affiliatesHighlightedLabel": {},
"possiblySensitive": true,
"pinnedTweetIds": [
"<string>"
],
"isAutomated": true,
"automatedBy": "<string>",
"unavailable": true,
"message": "<string>",
"unavailableReason": "<string>",
"profile_bio": {
"description": "<string>",
"entities": {
"description": {
"urls": [
{
"display_url": "<string>",
"expanded_url": "<string>",
"indices": [
123
],
"url": "<string>"
}
]
},
"url": {
"urls": [
{
"display_url": "<string>",
"expanded_url": "<string>",
"indices": [
123
],
"url": "<string>"
}
]
}
}
}
},
"entities": {
"hashtags": [
{
"indices": [
123
],
"text": "<string>"
}
],
"urls": [
{
"display_url": "<string>",
"expanded_url": "<string>",
"indices": [
123
],
"url": "<string>"
}
],
"user_mentions": [
{
"id_str": "<string>",
"name": "<string>",
"screen_name": "<string>"
}
]
},
"quoted_tweet": {},
"retweeted_tweet": {},
"isLimitedReply": true
}
],
"has_next_page": true,
"next_cursor": "<string>"
}400 response
{
"error": 123,
"message": "<string>"
}"\"reinforcement learning\" OR \"RL\" OR \"deep RL\" OR \"DQN\" OR \"reward function\" lang:en from:HuggingPapers""\"diffusion\" lang:en from:HuggingPapers"python -m spacy download en_core_web_trfTo visualize knowledge graph use this site - https://lite.gephi.org/v1.0.1/