AgentOps helps developers build, evaluate, and monitor AI agents. From prototype to production.
๐ Replay Analytics and Debugging | Step-by-step agent execution graphs |
๐ธ LLM Cost Management | Track spend with LLM foundation model providers |
๐งช Agent Benchmarking | Test your agents against 1,000+ evals |
๐ Compliance and Security | Detect common prompt injection and data exfiltration exploits |
๐ค Framework Integrations | Native Integrations with CrewAI, AutoGen, & LangChain |
pip install agentops
Initialize the AgentOps client and automatically get analytics on all your LLM calls.
import agentops
# Beginning of your program (i.e. main.py, __init__.py)
agentops.init( < INSERT YOUR API KEY HERE >)
...
# End of program
agentops.end_session('Success')
All your sessions can be viewed on the AgentOps dashboard
Add powerful observability to your agents, tools, and functions with as little code as possible: one line at a time.
Refer to our documentation
# Automatically associate all Events with the agent that originated them
from agentops import track_agent
@track_agent(name='SomeCustomName')
class MyAgent:
...
# Automatically create ToolEvents for tools that agents will use
from agentops import record_tool
@record_tool('SampleToolName')
def sample_tool(...):
...
# Automatically create ActionEvents for other functions.
from agentops import record_action
@agentops.record_action('sample function being record')
def sample_function(...):
...
# Manually record any other Events
from agentops import record, ActionEvent
record(ActionEvent("received_user_input"))
Build Crew agents with observability with only 2 lines of code. Simply set an AGENTOPS_API_KEY
in your environment, and your crews will get automatic monitoring on the AgentOps dashboard.
pip install 'crewai[agentops]'
With only two lines of code, add full observability and monitoring to Autogen agents. Set an AGENTOPS_API_KEY
in your environment and call agentops.init()
AgentOps works seamlessly with applications built using Langchain. To use the handler, install Langchain as an optional dependency:
Installation
pip install agentops[langchain]
To use the handler, import and set
import os
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from agentops.partners.langchain_callback_handler import LangchainCallbackHandler
AGENTOPS_API_KEY = os.environ['AGENTOPS_API_KEY']
handler = LangchainCallbackHandler(api_key=AGENTOPS_API_KEY, tags=['Langchain Example'])
llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY,
callbacks=[handler],
model='gpt-3.5-turbo')
agent = initialize_agent(tools,
llm,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
callbacks=[handler], # You must pass in a callback handler to record your agent
handle_parsing_errors=True)
Check out the Langchain Examples Notebook for more details including Async handlers.
First class support for Cohere(>=5.4.0). This is a living integration, should you need any added functionality please message us on Discord!
Installation
pip install cohere
import cohere
import agentops
# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
co = cohere.Client()
chat = co.chat(
message="Is it pronounced ceaux-hear or co-hehray?"
)
print(chat)
agentops.end_session('Success')
import cohere
import agentops
# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
co = cohere.Client()
stream = co.chat_stream(
message="Write me a haiku about the synergies between Cohere and AgentOps"
)
for event in stream:
if event.event_type == "text-generation":
print(event.text, end='')
agentops.end_session('Success')
Track agents built with the Anthropic Python SDK (>=0.32.0).
Installation
pip install anthropic
import anthropic
import agentops
# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
client = anthropic.Anthropic(
# This is the default and can be omitted
api_key=os.environ.get("ANTHROPIC_API_KEY"),
)
message = client.messages.create(
max_tokens=1024,
messages=[
{
"role": "user",
"content": "Tell me a cool fact about AgentOps",
}
],
model="claude-3-opus-20240229",
)
print(message.content)
agentops.end_session('Success')
Streaming
import anthropic
import agentops
# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
client = anthropic.Anthropic(
# This is the default and can be omitted
api_key=os.environ.get("ANTHROPIC_API_KEY"),
)
stream = client.messages.create(
max_tokens=1024,
model="claude-3-opus-20240229",
messages=[
{
"role": "user",
"content": "Tell me something cool about streaming agents",
}
],
stream=True,
)
response = ""
for event in stream:
if event.type == "content_block_delta":
response += event.delta.text
elif event.type == "message_stop":
print("\n")
print(response)
print("\n")
Async
import asyncio
from anthropic import AsyncAnthropic
client = AsyncAnthropic(
# This is the default and can be omitted
api_key=os.environ.get("ANTHROPIC_API_KEY"),
)
async def main() -> None:
message = await client.messages.create(
max_tokens=1024,
messages=[
{
"role": "user",
"content": "Tell me something interesting about async agents",
}
],
model="claude-3-opus-20240229",
)
print(message.content)
await main()
Track agents built with the Anthropic Python SDK (>=0.32.0).
Installation
pip install mistralai
Sync
from mistralai import Mistral
import agentops
# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
client = Mistral(
# This is the default and can be omitted
api_key=os.environ.get("MISTRAL_API_KEY"),
)
message = client.chat.complete(
messages=[
{
"role": "user",
"content": "Tell me a cool fact about AgentOps",
}
],
model="open-mistral-nemo",
)
print(message.choices[0].message.content)
agentops.end_session('Success')
Streaming
from mistralai import Mistral
import agentops
# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
client = Mistral(
# This is the default and can be omitted
api_key=os.environ.get("MISTRAL_API_KEY"),
)
message = client.chat.stream(
messages=[
{
"role": "user",
"content": "Tell me something cool about streaming agents",
}
],
model="open-mistral-nemo",
)
response = ""
for event in message:
if event.data.choices[0].finish_reason == "stop":
print("\n")
print(response)
print("\n")
else:
response += event.text
agentops.end_session('Success')
Async
import asyncio
from mistralai import Mistral
client = Mistral(
# This is the default and can be omitted
api_key=os.environ.get("MISTRAL_API_KEY"),
)
async def main() -> None:
message = await client.chat.complete_async(
messages=[
{
"role": "user",
"content": "Tell me something interesting about async agents",
}
],
model="open-mistral-nemo",
)
print(message.choices[0].message.content)
await main()
Async Streaming
import asyncio
from mistralai import Mistral
client = Mistral(
# This is the default and can be omitted
api_key=os.environ.get("MISTRAL_API_KEY"),
)
async def main() -> None:
message = await client.chat.stream_async(
messages=[
{
"role": "user",
"content": "Tell me something interesting about async streaming agents",
}
],
model="open-mistral-nemo",
)
response = ""
async for event in message:
if event.data.choices[0].finish_reason == "stop":
print("\n")
print(response)
print("\n")
else:
response += event.text
await main()
AgentOps provides support for LiteLLM(>=1.3.1), allowing you to call 100+ LLMs using the same Input/Output Format.
Installation
pip install litellm
# Do not use LiteLLM like this
# from litellm import completion
# ...
# response = completion(model="claude-3", messages=messages)
# Use LiteLLM like this
import litellm
...
response = litellm.completion(model="claude-3", messages=messages)
# or
response = await litellm.acompletion(model="claude-3", messages=messages)
AgentOps works seamlessly with applications built using LlamaIndex, a framework for building context-augmented generative AI applications with LLMs.
Installation
pip install llama-index-instrumentation-agentops
To use the handler, import and set
from llama_index.core import set_global_handler
# NOTE: Feel free to set your AgentOps environment variables (e.g., 'AGENTOPS_API_KEY')
# as outlined in the AgentOps documentation, or pass the equivalent keyword arguments
# anticipated by AgentOps' AOClient as **eval_params in set_global_handler.
set_global_handler("agentops")
Check out the LlamaIndex docs for more details.
AgentOps provides support for Llama Stack Python Client(>=0.0.53), allowing you to monitor your Agentic applications.
(coming soon!)
Platform | Dashboard | Evals |
---|---|---|
โ Python SDK | โ Multi-session and Cross-session metrics | โ Custom eval metrics |
๐ง Evaluation builder API | โ Custom event tag trackingย | ๐ Agent scorecards |
โ Javascript/Typescript SDK | โ Session replays | ๐ Evaluation playground + leaderboard |
Performance testing | Environments | LLM Testing | Reasoning and execution testing |
---|---|---|---|
โ Event latency analysis | ๐ Non-stationary environment testing | ๐ LLM non-deterministic function detection | ๐ง Infinite loops and recursive thought detection |
โ Agent workflow execution pricing | ๐ Multi-modal environments | ๐ง Token limit overflow flags | ๐ Faulty reasoning detection |
๐ง Success validators (external) | ๐ Execution containers | ๐ Context limit overflow flags | ๐ Generative code validators |
๐ Agent controllers/skill tests | โ Honeypot and prompt injection detection (PromptArmor) | ๐ API bill tracking | ๐ Error breakpoint analysis |
๐ Information context constraint testing | ๐ Anti-agent roadblocks (i.e. Captchas) | ๐ CI/CD integration checks | |
๐ Regression testing | ๐ Multi-agent framework visualization |
Without the right tools, AI agents are slow, expensive, and unreliable. Our mission is to bring your agent from prototype to production. Here's why AgentOps stands out:
- Comprehensive Observability: Track your AI agents' performance, user interactions, and API usage.
- Real-Time Monitoring: Get instant insights with session replays, metrics, and live monitoring tools.
- Cost Control: Monitor and manage your spend on LLM and API calls.
- Failure Detection: Quickly identify and respond to agent failures and multi-agent interaction issues.
- Tool Usage Statistics: Understand how your agents utilize external tools with detailed analytics.
- Session-Wide Metrics: Gain a holistic view of your agents' sessions with comprehensive statistics.
AgentOps is designed to make agent observability, testing, and monitoring easy.
Check out our growth in the community:
Repository | Stars |
---|---|
ย geekan / MetaGPT | 42787 |
ย run-llama / llama_index | 34446 |
ย crewAIInc / crewAI | 18287 |
ย camel-ai / camel | 5166 |
ย superagent-ai / superagent | 5050 |
ย iyaja / llama-fs | 4713 |
ย BasedHardware / Omi | 2723 |
ย MervinPraison / PraisonAI | 2007 |
ย AgentOps-AI / Jaiqu | 272 |
ย strnad / CrewAI-Studio | 134 |
ย alejandro-ao / exa-crewai | 55 |
ย tonykipkemboi / youtube_yapper_trapper | 47 |
ย sethcoast / cover-letter-builder | 27 |
ย bhancockio / chatgpt4o-analysis | 19 |
ย breakstring / Agentic_Story_Book_Workflow | 14 |
ย MULTI-ON / multion-python | 13 |
Generated using github-dependents-info, by Nicolas Vuillamy