Anonymize df is a package that helps you quickly and easily generate realistic fake data from a Pandas DataFrame.
- You're hiring consultants to work on your data but need to anonymize it first
- You're a consultant and created something great that you want to make into a template
You can install anonymizedf using pip:
pip install anonymizedf
This will also try downloading the tableau hyper api and pandas packages if you don't have them already.
If you don't want to use pip you can also download this repository and execute:
python setup.py install
import pandas as pd
from anonymizedf.anonymizedf import anonymize
# Import the data
df = pd.read_csv("https://query.data.world/s/shcktxndtu3ojonm46tb5udlz7sp3e")
# Prepare the data to be anonymized
an = anonymize(df)
# Select what data you want to anonymize and your preferred style
# Example 1 - just updates df
an.fake_names("Customer Name")
an.fake_ids("Customer ID")
an.fake_whole_numbers("Loyalty Reward Points")
an.fake_categories("Segment")
an.fake_dates("Date")
an.fake_decimal_numbers("Fraction")
# Example 2 - method chaining
fake_df = (
an
.fake_names("Customer Name", chaining=True)
.fake_ids("Customer ID", chaining=True)
.fake_whole_numbers("Loyalty Reward Points", chaining=True)
.fake_categories("Segment", chaining=True)
.fake_dates("Date", chaining=True)
.fake_decimal_numbers("Fraction", chaining=True)
.show_data_frame()
)
# Example 3 - multiple assignments
fake_df = an.fake_names("Customer Name")
fake_df = an.fake_ids("Customer ID")
fake_df = an.fake_whole_numbers("Loyalty Reward Points")
fake_df = an.fake_categories("Segment")
fake_df = an.fake_dates("Date")
fake_df = an.fake_decimal_numbers("Fraction")
fake_df.to_csv("fake_customers.csv", index=False)
# One thing to note is that you can't directly pass in a list of columns.
# If you want to apply the same function to multiple columns there are many ways to do that.
# Example 4 - for multiple columns
for column in column_list:
an.fake_categories(column)
Customer ID | Customer Name | Loyalty Reward Points | Segment | Date | Fraction | Fake_Customer Name | Fake_Customer ID | Fake_Loyalty Reward Points | Fake_Segment | Fake_Date | Fake_Fraction | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | AA-10315 | Alex Avila | 76 | Consumer | 01/01/2000 | 7.6 | Christian Metcalfe-Reid | YEJP71011502726136 | 558 | Segment 1 | 1978-11-09 | 29.96 |
1 | AA-10375 | Allen Armold | 369 | Consumer | 02/01/2000 | 36.9 | Helen Taylor | XWOB83170110594048 | 286 | Segment 1 | 1989-12-29 | 72.50 |
2 | AA-10480 | Andrew Allen | 162 | Consumer | 03/01/2000 | 16.2 | Joanne Price | VVCJ28547588747677 | 742 | Segment 1 | 1982-09-23 | 79.77 |
3 | AA-10645 | Anna Andreadi | 803 | Consumer | 04/01/2000 | 80.3 | Rhys Jones | OXCI12190813836802 | 206 | Segment 1 | 2000-10-14 | 7.15 |
4 | AB-10015 | Aaron Bergman | 935 | Consumer | 05/01/2000 | 93.5 | Nigel Baldwin-Cook | JOXS05799252235987 | 914 | Segment 1 | 2018-01-30 | 40.66 |