-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_cls.py
130 lines (99 loc) · 5.38 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import os
import shutil
from copy import deepcopy
from pathlib import Path
import numpy as np
import torch.optim.lr_scheduler
import yaml
from torch.cuda import amp
from tqdm import tqdm
import val_cls
from models.classifiersimple import *
from utils.general import set_random_seed, LOGGER, increment_path
from utils.load_utils import get_loaders, get_models
def log_values(args, epoch, values):
file = os.path.join(args.save_dir, 'results.csv')
n = len(values) + 1 # number of cols
s = '' if os.path.isfile(file) else (('%20s,' * n % tuple(['epoch', 'train_loss', 'val_loss', 'auroc_macro', 'aupr_macro', 'auroc_weighted', 'aupr_weighted'])).rstrip(',') + '\n') # add header
with open(file, 'a') as f:
f.write(s + ('%20.5g,' * n % tuple([epoch] + values)).rstrip(',') + '\n')
def prepare_env(args):
set_random_seed(args.seed)
with open(os.path.join(os.path.dirname(__file__), 'data', args.ind_dataset + '.yaml'), 'r') as f:
dataset_attributes = yaml.safe_load(f)
args.n_classes = dataset_attributes['nc']
args.data_root = dataset_attributes['path']
args.save_dir = str(increment_path(Path(args.project) / args.name))
args.mode = 'train'
Path(os.path.join(args.save_dir, 'weights')).mkdir(parents=True, exist_ok=True)
with open(os.path.join(args.save_dir, 'opt.yaml'), 'w') as f:
yaml.safe_dump(vars(args), f, sort_keys=False)
shutil.copyfile(args.hyp, os.path.join(args.save_dir, 'hyp.yaml'))
with open(args.hyp, 'r') as f:
hyp = yaml.safe_load(f)
LOGGER.info(args)
LOGGER.info(hyp)
return args, hyp
def train(args):
# setup all folders and args
args, hyp = prepare_env(args)
# load splits
train_loader, val_loader, _ = get_loaders(args, dataset_root=args.data_root, splits_to_load=['train', 'val'])
# load model
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model, classifier = get_models(args, train_loader.dataset.n_classes, device)
# init training
optimizer = torch.optim.Adam([{'params': model.parameters(), 'lr': hyp['lr0'] / 10},
{'params': classifier.parameters()}], lr=hyp['lr0'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=hyp['scheduler_patience'], verbose=True)
cuda = torch.cuda.is_available()
scaler = amp.GradScaler(enabled=cuda)
bce_loss = nn.BCEWithLogitsLoss()
best_loss = np.inf
for epoch in range(args.n_epoch):
epoch_loss = []
progress_bar = tqdm(enumerate(train_loader), desc=f'Epoch {epoch}', total=len(train_loader))
prog_bar_desc = 'Loss: {:.6}'
for i, (images, labels) in progress_bar:
images = images.to(device)
labels = labels.to(device)
with amp.autocast(enabled=cuda):
outputs = model(images)
outputs = classifier(outputs)
loss = bce_loss(outputs, labels.float())
epoch_loss.append(loss.item())
scaler.scale(loss).backward()
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
progress_bar.set_postfix_str(prog_bar_desc.format(np.mean(epoch_loss)))
aupr_dict, auroc_dict, val_loss = val_cls.validate(model, classifier, val_loader, bce_loss)
if val_loss < best_loss:
best_loss = val_loss
LOGGER.info('Better validation loss - updating weights')
torch.save(deepcopy(model).half().state_dict(),
os.path.join(args.save_dir, 'weights', "backbone_best.pth"))
torch.save(deepcopy(classifier).half().state_dict(),
os.path.join(args.save_dir, 'weights', 'classifier_best.pth'))
scheduler.step(val_loss)
log_values(args, epoch+1, [np.mean(epoch_loss), val_loss, auroc_dict['macro'], aupr_dict['macro'], auroc_dict['weighted'], aupr_dict['weighted']])
LOGGER.info("Epoch [%d/%d] Train Loss: %.4f | Val Loss: %.4f | AuROC_macro: %.4f | AuPR_macro: %.4f | AuROC_weighted: %.4f | AuPR_weighted: %.4f"
% (epoch+1, args.n_epoch-1, np.mean(epoch_loss), val_loss, auroc_dict['macro'], aupr_dict['macro'], auroc_dict['weighted'], aupr_dict['weighted']))
print(f'saved to {args.save_dir}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--ind_dataset', type=str, default='pascal_voc', choices=['pascal_voc', 'coco2017', 'objects365_in'])
parser.add_argument('--hyp', type=str, default="data/hyps/hyp.OOD.yaml")
parser.add_argument('--img_size', type=int, default=640)
parser.add_argument('--num_workers', type=int, default=6)
parser.add_argument('--arch', type=str, default='yolo_backbone')
parser.add_argument('--cfg', type=str, default="models/yolov5s - backbone.yaml")
parser.add_argument('--weights', type=str, default="weights/yolov5s.pth")
parser.add_argument('--n_epoch', type=int, default=30, help='# of the epochs')
parser.add_argument('--batch_size', type=int, default=64, help='Batch Size')
parser.add_argument('--project', type=str, default='runs/train_cls', help='save to project/name')
parser.add_argument('--name', type=str, default='exp', help='save to project/name')
parser.add_argument('--seed', type=int, default=0, help='save to project/name')
args = parser.parse_args()
train(args)