Skip to content

Anusha0501/AgroSphere

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🌾 AgroSphere

Agrosphere is an AI-powered conversational assistant designed to support agricultural knowledge dissemination. It leverages modern language models, embedding techniques, and a local vector database to answer user queries based on agricultural documents.

Screenshot 2025-05-05 at 17 22 04

Screenshot 2025-05-05 at 17 32 02

🚀 Features

  • Conversational AI chatbot trained on agricultural documents
  • Uses Google Generative AI and Groq APIs
  • Embedding storage with Chroma vector database
  • Streamlit-based UI for quick interaction
  • Environment-friendly design with smooth background

📁 Project Structure

agrosphere/
├── agribot.py                  # Main chatbot application
├── embedding.py                # Script to create document embeddings
├── background.jpg              # UI background image
├── .env                        # Environment variables (API keys etc.)
├── my\_chroma\_store/            # Chroma vector database
├── Agriculture/inr.pdf         # Sample input document
├── venv/                       # Python virtual environment

🧪 Requirements

Python 3.8 or later and the following Python libraries:


streamlit
python-dotenv
langchain
langchain-community
langchain-google-genai
langchain-groq

You can install these using:

pip install -r requirements.txt

You can create requirements.txt with:

streamlit
python-dotenv
langchain
langchain-community
langchain-google-genai
langchain-groq

🛠️ Setup Instructions

  1. Clone the Repository

    git clone https://github.com/your-username/agrosphere.git
    cd agrosphere
  2. Create and Activate Virtual Environment (optional)

    python -m venv venv
    source venv/bin/activate        # On Windows: venv\Scripts\activate
  3. Install Dependencies

    pip install -r requirements.txt
  4. Set Environment Variables

    Create a .env file in the project directory with:

    GOOGLE_API_KEY=your_google_api_key
    GROQ_API_KEY=your_groq_api_key
    
  5. Run the Chatbot

    streamlit run agribot.py

🧠 Adding New Knowledge

To embed new documents, update or add files in the Agriculture folder and re-run:

python embedding.py

This regenerates the vector database using Chroma.

Made with ❤️ for smart farming by Anusha Singh.

About

RAG based AI chatbot

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published