Financial Goal Setting and Risk Analysis Framework
A C++ terminal application that implements standard financial equations for analyzing investment scenarios, quantifying risk, and evaluating investment efficiency.
- Formula 1: Calculate Future Value given regular payments
- Formula 2: Calculate required payment to reach a financial goal
- Formula 3: Calculate time needed to reach a goal
- Annual/Monthly interest rate conversions
- Formula 4: Variance (σ²) - Measure of return dispersion
- Formula 5: Volatility/Standard Deviation (σ) - Standard risk measure
- Formula 8: Correlation Coefficient (ρ) - Asset correlation analysis
- Formula 9: Portfolio Volatility - Two-asset portfolio risk calculation
- Daily/Monthly to Annual volatility conversions
- Formula 6: Sharpe Ratio - Return per unit of risk
- Formula 7: Beta (β) - Correlation with market volatility
- Formula 10-11: Sortino Ratio - Downside risk-adjusted return
- Formula 12: Value at Risk (VaR) - Maximum expected loss quantification
- Covariance calculations for portfolio analysis
- Classify assets by volatility into 5 risk levels:
- Very Low Risk (0-2% annual volatility)
- Low Risk (2-8%)
- Medium Risk (8-20%)
- High Risk (20-40%)
- Very High Risk/Speculation (40%+)
- Detailed risk interpretations and asset examples
- Monte Carlo Simulation: Test 10,000+ random portfolio allocations
- Modern Portfolio Theory (MPT): Find optimal asset mix for maximum Sharpe Ratio
- Diversification Analysis: Account for asset correlations and covariance
- Risk-Return Tradeoff: Identify efficient portfolios on the frontier
Example Use:
EfficientFrontierResult result = PortfolioOptimizer::CalculateEfficientFrontier(
{goldReturns, sp500Returns, btcReturns},
{"Gold", "S&P 500", "Bitcoin"},
10000, // Number of simulations
0.02 // Risk-free rate
);
// Returns optimal weights, expected return, risk, and Sharpe Ratio- Sortino Ratio: Better than Sharpe - only penalizes downside volatility
- Downside Deviation: Measures only negative return volatility
- Value at Risk (VaR): Parametric and Historical methods
- Confidence Levels: 90%, 95%, and 99% VaR calculations
Example Use:
// Sortino Ratio (ignores upside volatility)
double sortino = RiskAnalyzer::CalculateSortinoRatio(returns, 0.02);
// Value at Risk
double var95 = RiskAnalyzer::CalculateHistoricalVaR(returns, 200000.0, 0.95);
// "95% confident won't lose more than $X"- Dollar-Cost Averaging (DCA): Test fixed-amount periodic investments
- Buy and Hold: Simple buy-and-hold strategy
- Moving Average Crossover: Golden Cross / Death Cross signals
- Performance Metrics: Total return, annualized return, maximum drawdown
Example Use:
// Test DCA strategy
DCAConfig config = {500.0, 30}; // $500 every 30 days
BacktestResult result = StrategyBacktester::RunDCABacktest(
historicalPrices, 10000.0, config
);
// Compare multiple strategies side-by-side- Z-Score Calculation: Identify statistical anomalies
- Mean Reversion Signals: Detect when ratios are extreme
- Relative Value Analysis: Compare two assets (Gold/Silver, etc.)
- Statistical Thresholds: |Z| > 2 indicates extreme deviation
Example Use:
RatioAnalysisResult result = RatioAnalyzer::AnalyzeRatio(
goldPrices, silverPrices, "Gold", "Silver"
);
// Get Z-score, signal, and interpretation
// Z > 2: Gold extremely expensive relative to silver
// Z < -2: Gold extremely cheap relative to silver- Comprehensive documentation of limitations
- Black Swan event awareness (Nassim Taleb)
- Source citations for all formulas
- Clear warnings about predictive validity
- Implementation pseudocode and mathematical foundations
This is a C++ terminal application. To build and run:
- CMake 3.10 or higher
- C++ compiler with C++17 support (GCC, Clang, or MSVC)
# Create build directory
mkdir build
cd build
# Configure with CMake
cmake ..
# Build the project
make
# Run the application
./investoolCore Components:
FinancialCalculator.h/cpp- Future Value of Annuity calculations (Formulas 1-3)RiskAnalyzer.h/cpp- Risk measurement and risk-adjusted performance metrics (Formulas 4-13)AssetClassifier.h/cpp- Asset classification by volatility and risk interpretationmain.cpp- Demonstration application with practical examples
Premium Features:
PortfolioOptimizer.h/cpp- Efficient Frontier via Monte Carlo simulation (Formulas 8-9)StrategyBacktester.h/cpp- Investment strategy backtesting engineRatioAnalyzer.h/cpp- Z-Score ratio analysis for mean reversion (Formula 13)
Build Configuration:
CMakeLists.txt- CMake build configuration
Documentation:
DOCUMENTATION.md- Complete API reference for core features (Formulas 1-7)ADVANCED_FORMULAS.md- Detailed mathematical documentation for premium features (Formulas 8-13)README.md- This file
Build Artifacts:
build/- CMake build directory (generated, gitignored)
#include "FinancialCalculator.h"
#include "RiskAnalyzer.h"
#include "AssetClassifier.h"
// Calculate investment goal
double fv = FinancialCalculator::CalculateFutureValue(20000, 0.01, 7);
// Analyze risk
std::vector<double> returns = {0.15, -0.20, 0.30, -0.10, 0.25};
double volatility = RiskAnalyzer::CalculateVolatility(returns);
double annualVol = RiskAnalyzer::MonthlyToAnnualVolatility(volatility);
// Classify asset
AssetClass classification = AssetClassifier::ClassifyByVolatility(annualVol);
std::cout << classification.description << std::endl;For complete API reference and detailed examples, see DOCUMENTATION.md.
| Formula | Purpose | Implementation |
|---|---|---|
| Formula 1 | Future Value (FV) | CalculateFutureValue(pmt, i, n) |
| Formula 2 | Required Payment (PMT) | CalculateRequiredPayment(fv, i, n) |
| Formula 3 | Required Periods (n) | CalculateRequiredPeriods(fv, pmt, i) |
| Formula 4 | Variance (σ²) | CalculateVariance(returns) |
| Formula 5 | Volatility (σ) | CalculateVolatility(returns) |
| Formula 6 | Sharpe Ratio | CalculateSharpeRatio(returns, rf) |
| Formula 7 | Beta (β) | CalculateBeta(assetReturns, marketReturns) |
| Formula | Purpose | Implementation |
|---|---|---|
| Formula 8 | Correlation Coefficient (ρ) | CalculateCorrelation(returns1, returns2) |
| Formula 9 | Portfolio Volatility (σ_p) | CalculatePortfolioVolatility(w1, σ1, w2, σ2, ρ) |
| Formula 10 | Downside Deviation (σ_d) | CalculateDownsideDeviation(returns, MARR) |
| Formula 11 | Sortino Ratio | CalculateSortinoRatio(returns, rf) |
| Formula 12 | Value at Risk (VaR) | CalculateHistoricalVaR(returns, value, conf) |
| Formula 13 | Z-Score | CalculateZScore(value, historicalData) |
- Future Value Formulas: Corporate Finance Institute (CFI), standard finance literature
- Risk Metrics: Modern Portfolio Theory (MPT), documented by Investopedia
- Sharpe Ratio: William F. Sharpe (Nobel Prize winner, 1990)
- Beta & CAPM: Capital Asset Pricing Model, standard finance theory
- Modern Portfolio Theory: Harry Markowitz, "Portfolio Selection" (1952), Nobel Prize winner (1990)
- Sortino Ratio: Frank A. Sortino and Robert van der Meer, "Downside Risk" (1991)
- Value at Risk: J.P. Morgan RiskMetrics (1996); Philippe Jorion, "Value at Risk" (2006)
- Z-Score & Statistical Methods: Standard statistical theory, quantitative finance literature
- Black Swan Theory: Nassim Nicholas Taleb
- "The Black Swan: The Impact of the Highly Improbable" (2007)
- "Antifragile: Things That Gain from Disorder" (2012)
- "Fooled by Randomness" (2001)
This is an educational tool implementing standard financial formulas from public domain finance literature.