forked from Eva-Claire/streamflix_recommender_system
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
746012d
commit 18c5ccd
Showing
1 changed file
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import streamlit as st | ||
import pandas as pd | ||
import numpy as np | ||
from surprise import Dataset, Reader, SVD | ||
import requests | ||
import pickle | ||
|
||
# Set page config | ||
st.set_page_config(page_title='STREAMFLIX', page_icon="🎬", layout='wide') | ||
|
||
# Load your data | ||
@st.cache_data | ||
def load_data(): | ||
df = pd.read_csv('movies_data/movies.csv') | ||
ratings = pd.read_csv('movies_data/ratings.csv') | ||
return df, ratings | ||
|
||
# Train your model | ||
@st.cache_resource | ||
def train_model(ratings): | ||
reader = Reader(rating_scale=(1, 5)) | ||
data = Dataset.load_from_df(ratings[['userId_x', 'movieId', 'rating']], reader) | ||
model = SVD() | ||
model.fit(data.build_full_trainset()) | ||
return model | ||
|
||
# Get recommendations | ||
def get_recommendations(model, df, user_ratings, n=5, genre=None): | ||
new_user_id = df['userId_x'].max() + 1 | ||
movies_to_predict = df[~df['movieId'].isin([x[0] for x in user_ratings])]['movieId'].unique() | ||
|
||
predictions = [] | ||
for movie_id in movies_to_predict: | ||
predicted_rating = model.predict(new_user_id, movie_id).est | ||
predictions.append((movie_id, predicted_rating)) | ||
|
||
recommendations = sorted(predictions, key=lambda x: x[1], reverse=True) | ||
|
||
if genre: | ||
genre_recommendations = [ | ||
(movie_id, rating) for movie_id, rating in recommendations | ||
if genre.lower() in df[df['movieId'] == movie_id]['genres'].iloc[0].lower() | ||
] | ||
return genre_recommendations[:n] | ||
else: | ||
return recommendations[:n] | ||
|
||
# Fetch movie poster | ||
@st.cache_data | ||
def fetch_poster(movie_id): | ||
url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key=your_api_key" | ||
response = requests.get(url) | ||
data = response.json() | ||
return "https://image.tmdb.org/t/p/w500/" + data.get('poster_path', '') | ||
|
||
# Main app | ||
def main(): | ||
st.title("🎬 Streamflix: Hybrid Movie Recommendation System") | ||
|
||
# Load data | ||
df, ratings = load_data() | ||
model = train_model(ratings) | ||
|
||
# Sidebar | ||
st.sidebar.title('Navigation') | ||
page = st.sidebar.radio('Go to', ['Home', 'Get Recommendations', 'Search Movie']) | ||
|
||
if page == 'Home': | ||
st.header('🔥 Top Trending Movies') | ||
top_movies = df.sort_values('popularity', ascending=False).head(10) | ||
|
||
for _, movie in top_movies.iterrows(): | ||
col1, col2 = st.columns([1, 3]) | ||
with col1: | ||
poster_url = fetch_poster(movie['id']) | ||
st.image(poster_url, width=150) | ||
with col2: | ||
st.subheader(movie['title']) | ||
st.write(f"Genres: {movie['genres']}") | ||
st.write(f"Average Rating: {movie['vote_average']:.1f}/10") | ||
if st.button(f"Rate {movie['title']}", key=f"rate_{movie['id']}"): | ||
rating = st.slider('Your rating', 0.5, 5.0, 3.0, 0.5, key=f"slider_{movie['id']}") | ||
st.write(f"You rated {movie['title']} {rating} stars!") | ||
st.write(''---'') | ||
|
||
elif page == 'Get Recommendations': | ||
st.header('🎯 Get Personalized Recommendations') | ||
user_id = st.number_input('Please enter your user ID', min_value=1, step=1) | ||
genres = st.multiselect('Select genres', df['genres'].explode().unique()) | ||
|
||
if st.button('Get Recommendations'): | ||
recommendations = get_recommendations(user_id, model, df, ratings) | ||
if genres: | ||
recommendations = recommendations[recommendations['genres'].apply(lambda x: any(genre in x for genre in genres))] | ||
|
||
st.subheader('Your Recommended Movies:') | ||
for _, movie in recommendations.iterrows(): | ||
col1, col2 = st.columns([1, 3]) | ||
with col1: | ||
poster_url = fetch_poster(movie['id']) | ||
st.image(poster_url, width=150) | ||
with col2: | ||
st.write(f'**{movie['title']}**') | ||
st.write(f'Genres: {movie['genres']}') | ||
st.write(f'Average Rating: {movie['vote_average']:.1f}/10') | ||
if st.button(f'Watch Trailer for {movie['title']}', key=f'trailer_{movie['id']}'): | ||
# You would need to implement a function to fetch and display the trailer | ||
st.video('https://www.youtube.com/watch?v=dQw4w9WgXcQ') # Placeholder | ||
st.write('---') | ||
|
||
elif page == 'Search Movies': | ||
st.header('🔍 Search Movies') | ||
search_term = st.text_input('Enter a movie title') | ||
if search_term: | ||
results = df[df['title'].str.contains(search_term, case=False)] | ||
for _, movie in results.iterrows(): | ||
col1, col2 = st.columns([1, 3]) | ||
with col1: | ||
poster_url = fetch_poster(movie['id']) | ||
st.image(poster_url, width=150) | ||
with col2: | ||
st.subheader(movie['title']) | ||
st.write(f'Genres: {movie['genres']}') | ||
st.write(f'Average Rating: {movie['vote_average']:.1f}/10') | ||
st.write(f'Overview: {movie['overview'][:200]}...') | ||
st.write('---') | ||
|
||
if __name__ == '__main__': | ||
main() |