Skip to content

Commit

Permalink
Edited the first part of the 2nd lecture
Browse files Browse the repository at this point in the history
  • Loading branch information
Ayushi141 committed Oct 17, 2024
1 parent e304eaf commit 0808ada
Showing 1 changed file with 79 additions and 67 deletions.
146 changes: 79 additions & 67 deletions main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
\newcommand{\acts}{\curvearrowright}
\newcommand\Gal[1]{\operatorname{Gal}({#1})}
\renewcommand{\phi}{\varphi}
\newcommand\discr[1]{\operatorname{discr}({#1})}

\begin{document}

Expand Down Expand Up @@ -154,79 +155,90 @@ \section{Preliminaries from algebraic number theory.}
\marginnote{User: GRK, password: 2240.}

\subsection{Number fields}

\begin{outline}
\begin{definition}
An algebraic number field is a finite field extension $k/\Q$.
\end{definition}
This implies it is of characteristic 0 and primitiive element theorem is available $\implies k=\Q(a)$ for some $a\in k$ with a unique minimal polynomial $f\in \Q[X]$ of $\deg d = [k:\Q]$.
\1 The roots $(a_1,\ldots,a_d)$ must not lie in $\Q$ but rather in algebraic closure of $\Q$ inside $\bC$ and are called \textbf{the Galois conjugates} of $a$.
\1 Requiring $a\mapsto a_i$ defines isomorphism $\Q(a)\cong \Q(a_i)$ and any embedding $\Q \rightarrow \bC$ must send $a$ to some $a_i$, so there are exactly $d$ embeddings $k\rightarrow \bC$.
\1 Note that $(a_1,\ldots,a_d)=\overline{(a_1,\ldots,a_d)}$, so $\sigma_i(k)\subseteq \R$ iff $\overline{a}_i=a_i$.
\2 So we can split embeddings in real ones (real places of $k$ denoted $r_1$) and complex ones (complex places of $k$, denoted $2r_2$ because of complex conjugation). This implies $d=r_1+2r_2$.
\3 For $k=\Q(\sqrt[3]{2})$, $r_1=1, r_2=1$.
\3 For $k=\Q(\exp(2 \pi i/n)$, $r_1=0, r_2 = \phi(n)/2, n\geq 3$.
\0 \begin{definition}
Associated to any $\alpha\in k$, we have two rational numbers: the \textbf{norm} and the \textbf{trace}.
$N_{k/\Q}(\alpha)=\sigma_1(\alpha)\ldots \sigma_d(\alpha)$ and $Tr_{k/\Q}(\alpha)=\sigma_1(\alpha)+\ldots+\sigma_d(\alpha)$
\end{definition}
\marginnote{$N_{k/\Q}(\alpha)=\det (\alpha N \rightarrow N)$, similarly for trace.}
Let $(\alpha_1,\ldots,\alpha_d)\in k$, $\lambda_1,\ldots,\lambda_d\in\Q$ such that $\sum \lambda_i\alpha_i = 0 \iff \sum \lambda_i \sigma(\alpha_i)=0$ for all $i$. Then $\{\alpha_i\}$ is a basis of $k$ $\iff \det (\sigma_i(\alpha_j))\neq 0$.

\begin{definition}
The \textbf{discriminant} of a basis $\{\alpha_1,\ldots,\alpha_d\}$ is given by $\det^2(\sigma_i(\alpha_j))\in\Q$.
\end{definition}
\begin{definition}
An algebraic number field is a finite field extension $k/\Q$.
\end{definition}
\1 This definition implies the following properties:
\2 The field $k$ has characteristic 0.
\2 By the Primitive Element Theorem, $k = \mathbb{Q}(a)$ for some $a \in K$.
\2 There exists a unique minimal polynomial $f \in \mathbb{Q}[X]$ for $a$, with $\deg(f) = d = [k:\mathbb{Q}]$.
\1 Let $(a_1, \ldots, a_d)$ be the roots of $f$ in the algebraic closure of $\mathbb{Q}$ within $\mathbb{C}$. These roots are called the \textbf{Galois conjugates} of $a$. Note that these roots do not lie in $\mathbb{Q}$.
\1 Properties of embeddings:
\2 For each $i$, the map $a \mapsto a_i$ defines an isomorphism $\mathbb{Q}(a) \cong \mathbb{Q}(a_i)$.
\2 Any embedding $k\rightarrow \mathbb{C}$ must send $a$ to some $a_i$.
\2 There are exactly $d$ embeddings $k \rightarrow \mathbb{C}$, denoted $\sigma_1, \ldots, \sigma_d$.
\1 Classification of embeddings:
\2 Note that $(a_1, \ldots, a_d) = \overline{(a_1, \ldots, a_d)}$, so $\sigma_i(k) \subseteq \mathbb{R}$ if and only if $\overline{a_i} = a_i$.
\2 We can thus classify the embeddings as:
\3 Real embeddings (real places of $K$): $r_1$
\3 Complex embeddings (complex places of $K$): $2r_2$ (counted in pairs due to complex conjugation)
\2 This classification implies $d = r_1 + 2r_2$
\1 Examples:
\2 For $k = \mathbb{Q}(\sqrt[3]{2})$: $r_1 = 1, r_2 = 1$
\2 For $k = \mathbb{Q}(\exp(2\pi i/n))$, $n \geq 3$: $r_1 = 0, r_2 = \phi(n)/2$ (odd $n$)
\0 \begin{definition}
For any $\alpha \in K$, we define two rational numbers:\\
1. The norm: $N_{K/\mathbb{Q}}(\alpha) = \prod_{i=1}^d \sigma_i(\alpha)$\\
2. The trace: $Tr_{K/\mathbb{Q}}(\alpha) = \sum_{i=1}^d \sigma_i(\alpha)$
\end{definition}
\marginnote{Note: $N_{K/\mathbb{Q}}(\alpha) = \det(\alpha: K \rightarrow K)$, and similarly for the trace.}
\1 Basis criterion: Let $(\alpha_1,\ldots,\alpha_d)\in k$ and $\lambda_1,\ldots,\lambda_d\in\Q$. Then $\sum_{i=1}^d \lambda_i\alpha_i = 0 \iff \sum_{i=1}^d \lambda_i \sigma_j(\alpha_i)=0$ for all $j$.
Moreover, $\{\alpha_i\}_{i=1}^d$ is a basis of $k$ if and only if $\det(\sigma_i(\alpha_j))\neq 0$.
\0 \begin{definition}
The \textbf{discriminant} of a basis $\{\alpha_1,\ldots,\alpha_d\}$ of a number field $k$ of degree $d$ over $\Q$ is defined as: $\discr{\{\alpha_1,\ldots,\alpha_d\}}=\det^2(\sigma_i(\alpha_j))\in\Q$, where $\sigma_1,\ldots,\sigma_d$ are the $d$ distinct embeddings of $k$ into $\bC$.
\end{definition}
\begin{exercise}
Prove that $\discr{\alpha_i} = \det(Tr_{k/\Q}(\alpha_i\alpha_j))_{1 \leq i,j \leq d}$. Show that if $k = \Q(a)$ for some $a \in k$, then $\discr{\{1,a,a^2,\ldots,a^{d-1}\}} = \prod_{1 \leq i < j \leq d}(\sigma_i(a)-\sigma_j(a))^2$.
\end{exercise}
\0 To introduce relative versions for an extension $l/k$, we define the relative discriminant $\discr{}_{l/k}$ using only those embeddings $\sigma_i : l \hookrightarrow \mathbb{C}$ which restrict to the identity on $k$.
\end{outline}

\begin{exercise}
Show that discr$\{\alpha_i\}=\det Tr_{k/\Q}(\alpha_i,\alpha_j)$. Show that $k\in \Q(a) \implies discr\{1,a,a^2,\ldots,a^{d-1}\}=\prod_{i<j}(\sigma_i(a)-\sigma_j(a))^2$
\end{exercise}

Similarly we want to introduce relative versions for $l/k$. We define $discr_{l/k}$ using only those $\sigma_i:l\xhookrightarrow{} \bC$ which restrict to identity on $k$.

\subsection{Integrality in number fields}

\begin{outline}
\marginnote{Algebraic number theory is not (algebraic) number theory but rather (algebraic number) theory.}
\0 Algebraic number theory really is about algebraic integers. So now we define them. For the remainder let $k$ be an algebraic number field.
\begin{definition}
The ring of integers in $k$ is given by $\cO_k=\{\alpha \in k : f(\alpha)=0 \text{ for some monic }f\in \Z[X]\}$.
\end{definition}
\1 Example: $\cO_\Q = \Z$. $\Z$ is often denoted as \enquote{rational integers}.
\0 Why do they form a ring?
\begin{proposition}
Let $(\alpha_1,\ldots,\alpha_r)\in k$. Then $(\alpha_1,\ldots,\alpha_r)\in\cO_k \iff \Z[\alpha_1,\ldots,\alpha_r]$ is finitely generated.
\end{proposition}
The corolllary is that $\cO_k$ is a ring. (why?)

\begin{lemma}
For $\alpha \in k$, there exist $\beta \in \cO_k, n\in\Z$ such that $\alpha=\frac{\beta}{n}$.
\end{lemma}

From now on we can assume that our algebraic number field is generated by a primitive element which is an algebraic integer.

\begin{proposition}
We can sandwhich the ring $\cO_k$ between $\Z[a]$ and $\frac{1}{discr\{1,\ldots,a^{d-1}\}} \Z[a]$. (This 1/discr is in $\Z$ because it is in the intersection of algebraic integers in $k$ and $\Q$). Because it lies between two free abelian groups of the same rank, it has to be free abelian of the same rank.
\end{proposition}

\begin{corollary}
$\cO_k$ has a $\Z$-basis of rank $d$.Any such is called an integral basis.
\end{corollary}
(Z lattice in a Q vector space and you exhaust it by multiplying with the integers? What? Minkowski geometry of numbers (covolumes?))

\begin{corollary}
$\cO_k$ is noetherian.
\end{corollary}

\begin{definition}
The discriminant of $k$ is given by $discr_k=d_k=discr\{ \alpha_1, \ldots, \alpha_d \}$ for an integral basis. Well-defined because $\det(T...)=\pm 1$.
\end{definition}

More generally, we can also define relative discriminants $ fancy d_{l/k} = discr(\beta_i)\subseteq \cO_k$. This d is an ideal because in general we might be not in a PID anymore.

\begin{exercise}
$k=\Q(\sqrt{D})$, $D$ square-free integer. If $D \equiv 1 (4)$ or $D \equiv 2,3 (4)$ then the integral basis is ... and discriminant is $D$ or $4D$.
\end{exercise}
\marginnote{Algebraic number theory is not (algebraic) number theory but rather (algebraic number) theory.}
\0 Let $k$ be an algebraic number field for the following discussion.
\begin{definition}
The ring of integers in $k$ is defined as:
$$\cO_k=\{\alpha \in k : f(\alpha)=0 \text{ for some monic }f\in \Z[X]\}.$$
\end{definition}
\1 Example: $\cO_\Q = \Z$. It is often referred to as the ring of \enquote{rational integers}.
\begin{proposition}
For $(\alpha_1,\ldots,\alpha_r)\in k$, the following are equivalent:\\
1. $(\alpha_1,\ldots,\alpha_r)\in\cO_k$\\
2. $\Z[\alpha_1,\ldots,\alpha_r]$ is finitely generated as a $\Z$-module.
\end{proposition}
The corolllary is that $\cO_k$ is a ring. (why?)

\begin{lemma}
For $\alpha \in k$, there exist $\beta \in \cO_k, n\in\Z$ such that $\alpha=\frac{\beta}{n}$.
\end{lemma}

From now on we can assume that our algebraic number field is generated by a primitive element which is an algebraic integer.

\begin{proposition}
We can sandwhich the ring $\cO_k$ between $\Z[a]$ and $\frac{1}{discr\{1,\ldots,a^{d-1}\}} \Z[a]$. (This 1/discr is in $\Z$ because it is in the intersection of algebraic integers in $k$ and $\Q$). Because it lies between two free abelian groups of the same rank, it has to be free abelian of the same rank.
\end{proposition}

\begin{corollary}
$\cO_k$ has a $\Z$-basis of rank $d$.Any such is called an integral basis.
\end{corollary}
(Z lattice in a Q vector space and you exhaust it by multiplying with the integers? What? Minkowski geometry of numbers (covolumes?))

\begin{corollary}
$\cO_k$ is noetherian.
\end{corollary}

\begin{definition}
The discriminant of $k$ is given by $discr_k=d_k=discr\{ \alpha_1, \ldots, \alpha_d \}$ for an integral basis. Well-defined because $\det(T...)=\pm 1$.
\end{definition}

More generally, we can also define relative discriminants $ fancy d_{l/k} = discr(\beta_i)\subseteq \cO_k$. This d is an ideal because in general we might be not in a PID anymore.

\begin{exercise}
$k=\Q(\sqrt{D})$, $D$ square-free integer. If $D \equiv 1 (4)$ or $D \equiv 2,3 (4)$ then the integral basis is ... and discriminant is $D$ or $4D$.
\end{exercise}
\end{outline}

\subsection{The arithmetic of algebraic intgers}
Expand Down

0 comments on commit 0808ada

Please sign in to comment.