Skip to content

Commit

Permalink
Raw lecture 4
Browse files Browse the repository at this point in the history
  • Loading branch information
Ayushi141 committed Nov 7, 2024
1 parent d877909 commit 3d501c8
Showing 1 changed file with 87 additions and 1 deletion.
88 changes: 87 additions & 1 deletion main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -452,9 +452,95 @@ \subsection{Valuations and completions}
\end{theorem}
\end{outline}

\marginnote{Lecture 4, ...}
\marginnote{Lecture 4, 07.11.24}

\begin{outline}
\0 \begin{theorem}
Ostrowski.
1)
2)
exhaust all non trivial valuations on $k$ up to equivalence.
\end{theorem}

\0 \begin{definition}
The equivalence classes of (non-archimedian/archimedian) valuations on $k$ are called (finite/infinite) places.
\end{definition}

Perks of places: The infinite places complete the picture... They allow for completion, so that also a finite place corresponds to embedding for a complete field.

\0 \begin{definition}
$k \xhookrightarrow{} k_v$ is the completion of $k$ with respect to $d_v(x,y)=|x-y|_v$. $k_v=cauchysequences in k / null sequences$ as constant sequences.
\end{definition}

\0 p-adic numbers, p-adic fields

\0 \begin{definition}
valuation rings of the valued fields
\end{definition}

\0 \begin{definition}
completion of $k$ with respect to...
\end{definition}

\0 Note that $O_{(v)}=O_V \cap k$ and $O_v = \overline{O_{(v)}}$. The rings $O_v$ and $O_{(v)}$ are PIDs with unique maximal ideals $\pi O_v={x\in O_v : v(x) <1}$ and $\pi O_{(v)}=\{x\in O_{(v)}:v(x)<1\}$ so they are discrete valuation rings (DVR).

\0 The up to association unique element $\pi\in O_{(v)}\subseteq O_v$ is called a uniformizer. We have a canonical isomorphism $O_{(v)}/\pi O_{(v)}\rightarrow \cong O_V / \pi O_v$ of the residue field.

\0 \begin{theorem}
Let $K$ be complete with valuation $v$ and $L/K$ algebraic. Then $v$ extends uniquely to $L$. If $[L:K]=d < \infty$, then $\nabla(x)=\sqrt[d]{v(N_{L/K}(x)}$ for $x\in L$.
\end{theorem}

\0 In particular, $v_p$ on $\Q_p$ extends uniquely to $\overline{\Q}_p$. Given $\sigma:k\xhookrightarrow{} \overline{\Q}_p$, we obtain $v_\sigma := \overline{v_p}\circ \sigma$. If $\tau \in \Gal{\overline{Q_p}/\Q_p}$ then $\overline{v_p}=\overline{v_p}\circ \tau$, so $v_\sigma = v_{\tau \circ \sigma}$. Basically, extensions of valuations are given by embeddings? Idk

\0 \begin{theorem}
1) Every extension $w$ of $v_p$ from $\Q$ to $k$ is of the form $w=v_\sigma$ for some $\sigma: k \xhookrightarrow{} \overline{\Q}_p$.
2) $v_\sigma = v_{\sigma'}$ iff there is $\tau \in \Gal{\overline{Q}_p/\Q_p}$: $\sigma' = \tau \circ \sigma$.
\end{theorem}

\0 Remark: this also holds for $p=\infty$ when $\Q_\infty = \R$. Hence: complex infinite places are in 1:1 correspondence with conjugate classes of embeddings $\sigma: k \xhookrightarrow{} \bC$, $\sigma(k)\not\subset \R$. Real infinite places correspond $1:1$ to embeddings $\sigma: k \xhookrightarrow{} \R$. Finite places over $p$ correspond 1:1 to conjugacy classes of $\sigma: k\xhookrightarrow{} \overline{Q}_p$ AND also to non-zero prime ideals $p$ of $O_k$ with $p|p$.

\0 Moreover: $k_W = \sigma(k')$ $\Q_p \subseteq \overline{Q}_p$ if $w=\overline{v}_p \circ \sigma$, $\sigma:k\xhookrightarrow{} \overline{Q}_p$. So There is a commutative square

\begin{tikzcd}
\mathcal{k} \arrow[r] \arrow[d, leftarrow] & \mathcal{k}_w \arrow[d, leftarrow] \\
\mathcal{O} \arrow[r] & \mathcal{O}_p
\end{tikzcd}

showing the global and local side of correspondence ?

\0 \begin{theorem}
$k\otimes \Q_p \cong \prod_{w | p} k_w$ and $[k_w : \Q_p] = e_w \cdot f_w$ if $p<\infty$.
\end{theorem}

\0 \begin{definition}
The ring of adeles of $k$ is $\bA_k = \prod_{w \in V(k)} k_W$ (with $O_W \subseteq k_W$ cofinite). Adele comes from additive element. The idele group of $k$ is $\bI_k = \bA^*_k$. $k$ embeds diagonally both in $\bA_k$ and $\cI_k$ with discrete image.
\end{definition}
\end{outline}

\subsection{Local-global principle}

\begin{outline}
\0 Let $p\in k[X]$. Suppose $x\in k$ satisfies $p(x)=0$. Then, of course, $x\in k \subset k_v$ defines a solution $x\in k_v$ to $p(x)=0$. If, on the other hand, we find a local solution $x_v \in k_v$ with $p(x_v)=0$ for all $v\in V(k)$, does this imply that there exists a global solution?
\1 Success Cases: The principle works for:
\2 Quadratic forms (Minkowski-Hasse)
\2 Norm equations for cyclic extensions
\2 Some other special polynomials
\1 Famous Counterexamples:
\2 Selmer's cubic: 3x³ + 4y³ + 5z³ = 0
\2 Genus 1 curves can fail
\2 Higher degree forms often fail
\1 Modern Understanding:
\2 Obstruction is measured by Shafarevich-Tate group
\2 For genus 0 curves, principle holds
\2 For genus $\geq$ 1, additional cohomological obstructions appear
\2 Brauer-Manin obstruction explains many failures
\0 \begin{theorem}
Hasse norm principle. Let $k/\Q$ be cyclic and $x\in \Q$. Then $x=N_{k/\Q}(y)$ for some $y\in k$ iff $x=N_{k_v/\Q_p}(y_v)$ for some $y_k\in k_v$ for all $v|p$ and all $p\geq \infty$.
\0 \begin{theorem}
Hasse principle for central simple algebras.
\end{theorem}
\end{theorem}
\end{outline}

\end{document}

0 comments on commit 3d501c8

Please sign in to comment.