Skip to content

Commit

Permalink
Initial Overleaf Import
Browse files Browse the repository at this point in the history
  • Loading branch information
Ayushi141 committed Oct 11, 2024
0 parents commit cb38f40
Show file tree
Hide file tree
Showing 5 changed files with 2,518 additions and 0 deletions.
149 changes: 149 additions & 0 deletions main.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
\input{preamble.tex}
\title{Galois Cohomology of Algebraic Groups}
\author[Ayushi Tsydendorzhiev]{Ayushi Tsydendorzhiev}
\usepackage{enumitem}
\usepackage{stmaryrd}
\usepackage{xhfill}
\usepackage{array}
\usepackage{outlines}
\usepackage{faktor}
\usepackage{float}
\usepackage{mathtools}
\usepackage{tikz-cd}
\usepackage{centernot}
\usepackage{cancel}
\newcommand{\ra}{\rightarrow}
\newcommand{\lra}{\longrightarrow}
\newcommand{\eps}{\varepsilon}
\renewcommand{\P}{\mathbb{P}}
\newcommand{\acts}{\curvearrowright}
\newcommand\Gal[1]{\operatorname{Gal}({#1})}
\renewcommand{\phi}{\varphi}

\begin{document}

\maketitle

\tableofcontents
\clearpage

\section{Introduction}

\subsection{Galois group actions}
\marginnote{Lecture 1, 10.10.2024}
\begin{outline}
\0 Let $L/K$ be a Galois extension and $G=\Gal{L/K}$ its Galois group. The Galois group $G$ acts on $L$ via field automorphisms:
\1 Action on the field extension $L$: For $\Q(\sqrt{2})$ its Galois group $\Gal{\Q(\sqrt{2})/\Q}$ acts either by identity or by sending $\sqrt{2}$ to $-\sqrt{2}$.
\1 Action on the dual of the field extension $L^*$: For $\Q(\sqrt{2})^*$ its Galois group acts on $f(x_1,x_2)=x_1\cdot 1 + x_2 \cdot \sqrt{2}$ either by identity or by sending $f$ to $f'=x_1\cdot 1 -x_2 \cdot \sqrt{2}$.
\1 Action on the group of $n$th roots of unity $\mu_n(L)$:
\2 In $\Q(\sqrt{2})$, the $n$th roots of unity consist of $\{-1,1\}$ if $n$ is even and $\{1\}$ if $n$ is odd. Both automorphisms in $\Gal{\Q(\sqrt{2})/\Q}$ leave $\mu_n(\Q)$ fixed, so this tells us that they all belong to the base field (are rational, in this case).
\2 A more interesting example is the $n$th cyclotomic field $\Q(\zeta_n)$.In this field $\mu_n (Q(\zeta_n))=\langle \zeta_n \rangle$, the cyclic group generated by $\zeta_n$. The Galois group $\Gal{Q(\zeta_n)/Q}$ is isomorphic to $(\Z/n\Z)^*$. For $n=5$ (prime), the Galois group is cyclic and consists of $\{1, \zeta_5, \zeta_5^2, \zeta_5^3, \zeta_5^4\}$. The action of the Galois group then permutes the $5$th roots of unity. For $n=8$, the Galois group $\Gal{\Q(\zeta_8)/\Q}$ is isomorphic to $(\Z/8\Z)^*=\{1,3,5,7\}$ and is cyclic of order $4$. The basis of $\Q(\zeta_8)$ over $\Q$ is given by $\{1,\zeta_8,\zeta_8^2, \zeta_8^3\}$. The actions is given as: $\sigma_1$ acts trivially, $\sigma_3$ maps $\zeta_8$ to $\zeta_8^3$, $\sigma_5$ acts by multiplication by $-1$ and $\sigma_7$ maps $\zeta_8$ to $\zeta^7_8$.
\1 Action on the cyclic group $(\Z/n\Z)^*$: same as above.
\1 Action on a finite abelian group $M$: trivial action.
\1 Action on the general linear group $\GL_n(L)$ over a field $L$ of characteristic $0$: $\GL_n(L)$ consists of $n\times n$ invertible matrices over $L$. We have a Galois extension $L/K$. The Galois group acts by applying the field automorphisms to the entries of the matrices, so $\sigma(A)=\sigma(a_{ij}) \forall 1\leq ij \leq n$. The fixed points contain $\GL_n(K)$.
\2 Backstory: The determinant of a $n\times n$ matrix $A$ is defined as
\marginnote{$\sgn(\pi)$ is either even or odd. $+1$ if even and $-1$ if odd.}
$$\det(A) = \sum_{\pi \in S_n} \left( \sgn(\pi) \prod_{i=1}^n a_{i,\pi(i)} \right)$$
Consider $\sigma(\det (A))$, where $\sigma \in \Gal{L/K}$ is a field automorphism. It distributes over addition and multiplication:
$$\sigma(\det(A)) = \sum_{\pi \in S_n} \left( \sgn(\pi) \prod_{i=1}^n \sigma(a_{i,\pi(i)}) \right)$$
The signum is either $+1$ or $-1$, so it is always in the base field $K$ and is fixed by $\sigma$. Thus $\sigma(\det(A))=\det(\sigma(A))$. So the action of the Galois group preserves determinants.
\end{outline}

\subsection{The fixed point functor and exact sequences}

\begin{outline}
\0 All of these examples are special cases of a more general concept: a group $G$ acting on an algebraic group $\bG \subseteq \GL_n$.
\marginnote{An algebraic group is a matrix group defined by polynomial conditions, at least this is what \enquote{The theory of group schemes of
finite type over a field.} by Milne says. I guess this is the consequence of Chevalley theorem?}

When studying group actions, we're often interested in fixed points
$$A^G =\{a\in A \mid \forall \sigma \in G: \sigma a = a \}$$
Here, $A^G$ represents the set of all elements in $A$ that are fixed by every element of $G$. To study fixed points more systematically, we introduce the fixed point functor $-^G$. This functor takes a $\Z G$-module and returns its fixed points. We're particularly interested in how this functor behaves with respect to exact sequences.

\begin{note}
~\\
\textbf{Group action perspective}: A $\Z G$-module is an abelian group $A$ endowed with a (left) action $(\sigma, a) \mapsto \sigma a$ of $G$ on $A$ such that for all $\sigma\in G$ the map $\phi_\sigma : a \mapsto \sigma a$ from $A$ to $A$ is a morphism of abelian groups. This implies that the action of $G$ is distributive, $\phi_\sigma (ab) = \phi_\sigma (a) + \phi_\sigma (b)$.\\
\textbf{Ring module perspective}: Equivalently, a $\Z G$-module is a module over the group ring $\Z[G]$, where elements consist of formal linear combinations of elements from group $G$ with integer coefficients, so something like $3g_1+4g_2+10g_3 \in \Z[G]$. It contains both $\Z$ and $G$ as subrings.\\
The $\Z[G]$-module structure encapsulates both the abelian group structure of $A$ and the $G$-action on $A$, which leads to the key insight:
$$\{\text{module over } \Z[G]\} \leftrightarrow \{\text{abelian group $A$ with $G$-action}\}$$
\end{note}

\begin{lemma}
Consider an exact sequence of $\Z G$-modules:
$$\begin{tikzcd}
0\arrow[r] & A \arrow[r, "f"] & B\arrow[r, "g"] & C\arrow[r, "h"] & 0
\end{tikzcd}$$
Applying the fixed point functor $-^G$ to this sequence yields:
$$\begin{tikzcd}
0\arrow[r] & A^G \arrow[r, "f^G"] & B^G \arrow[r, "g^G"] & C^G
\end{tikzcd}$$
This new sequence is exact in Ab (the category of abelian groups). Thus the functor $-^G$ is left-exact, meaning it preserves exactness at the left end of the sequence.
\end{lemma}

\1 A natural question arises: Is the fixed point functor also right-exact? If such a lifting always exists, then the fixed point functor preserves exactness at $C$, making it right-exact.
If not, we've discovered an obstruction that tells us something about the Galois action and the structure of our groups.
\1 To investigate this, we need to check if $\ker h^G = \im g^G$, or equivalently, if $\im g^G = C^G$. Breaking this down:
\2 Take any $c \in C^G$.
\2 Since $C^G \subseteq C$, there exists a $b \in B$ such that $g(b) = c$.
\2 If $b$ were fixed by $G$, we'd be done. But it might not be.
\marginnote{Why $\sigma b = b$?}
\3 Consider $\sigma b - b$ for any $\sigma \in G$. We have $g(\sigma b - b) = g(\sigma b) - g(b)= \sigma g(b)-g(b)=\sigma c - c$.
\3 Since $c\in C^G$, $\sigma c - c = 0$ and $(\sigma b-b)\in \ker g$.
\3 By exactness, $\ker g = \im f$, so $\sigma b - b \in \im f$.
\3 We can view this as an element of $A$ (considering $f$ as an inclusion $A \subseteq B$).
\1[] So the question of right-exactness boils down to whether or not every $G$-invariant element of $C$ can be lifted to a $G$-invariant element of $B$ and the obstruction to it lives inside $A$.
\1 This analysis leads us to define a map (for a given $c\in C^G$):
$$\phi: G \to A, \quad \sigma \mapsto \sigma b - b =: a_\sigma$$
This map is called a crossed homomorphism (also known as a derivation or 1-cocycle). It measures how far $b$ is from being $G$-invariant. If $b$ were $G$-invariant, this map would be identically $0$.

\begin{proposition}
The map $\sigma \mapsto a_\sigma$ satisfies:
$$a_{\sigma\tau} = a_\sigma + \sigma a_\tau$$
This property is what defines a crossed homomorphism.
\end{proposition}

\1 \textbf{In the abelian case}, we define
\2 $Z^1(G,A)=\{a':G\ra A \mid a'_{\sigma \tau} = a'_{\sigma}+\sigma a'_{\tau}\}$, the set of all crossed homomorphisms from $G$ to $A$.
\2 $B^1(G,A)=\{a:\sigma \in Z^1(G,A) \mid \exists a'\in A : a_\sigma = \sigma a' - a'\}$.
\2 The quotient $H^1(G,A) = Z^1(G,A) / B^1(G,A)$ is called the \textbf{first cohomology group} of $G$ with coefficients in $A$. It measures the obstruction to the right-exactness of the fixed point functor.
\marginnote{The functor $A\mapsto H^1(G,A)$ is a derived functor of the $A\mapsto A^G$ functor.}

\1[] The obstructions for right-exactness: find $\sigma b -b \in A$ such that it is $0$ under projection in $Z^1(G,A)/B^1(G,A)$. It is given by $\delta(c) = [a_\sigma]\in H^1(G,A) = Z^1(G,A)/B^1(G,A)$. We can extend our original sequence to a longer exact sequence:
$$\begin{tikzcd}[column sep=small]
0 \arrow[r] & A^G \arrow[r] & B^G \arrow[r] & C^G \arrow[r, "\delta"] & H^1(G,A) \arrow[r] & H^1(G,B) \arrow[r] & H^1(G,C) \arrow[r] & 0
\end{tikzcd}$$
This sequence is exact in Ab, and the map $\delta$ (called the connecting homomorphism) measures the failure of right-exactness of the fixed point functor.

\begin{exercise}
Show that $H^1(G,-)$ is functorial and
$$\begin{tikzcd}[column sep=small]
0 \arrow[r] & A^G \arrow[r] & B^G \arrow[r] & C^G \arrow[r] & H^1(G,A) \arrow[r] & H^1(G,B) \arrow[r] & H^1(G,C) \arrow[r] & 0
\end{tikzcd}$$
is exact. Find example with $\delta \neq 0$.
\end{exercise}

\1 \textbf{In the non-abelian case}, we define
\2 $H^0(G,A)=A^G$, the fixed points as before.
\2 $H^1(G,A)=Z^1(F,A)/\sim$, where $\sim$ is an equivalence relation defined by: $a_\sigma \sim b_\sigma \iff \exists a' \in A : b_\sigma = (a')^{-1} \cdot a_\sigma \cdot \prescript{\sigma}{}{a'}$.
\marginnote{We cannot expect $B^1(G,A)$ to be a subgroup. Why?}
\marginnote{$\prescript{\sigma}{}{a}$ denotes the action of $\sigma$ on $a$.}
\1[] In this case, $H^1(G,A)$ doesn't have a group structure, but it's a pointed set (a set with a distinguished element). We can still define a notion of exactness for sequences of pointed sets.
\marginnote{Exactness in pointed sets $(A,*)$ is defined as $\im f = \ker g = g^{-1}(*)$}

\marginnote{$A\leq_G B$ is $G$-equivariant inclusion.}
\begin{proposition}
For $A\leq_G B$, we obtain $G\acts B/A$ and
$$\begin{tikzcd}[column sep=small]
1 \arrow[r] & H^0(G,A) \arrow[r] & H^0(G,B) \arrow[r] & H^0(G,C) \arrow[r] & H^1(G,A) \arrow[r] & H^1(G,B)
\end{tikzcd}$$
is exact.
\end{proposition}

This is the \textbf{Galois cohomology}. Why do we care? In the non-commutative case $H^1(G,A)$ classifies \enquote{K-objects}. In our lecture we will use this to classify simple and simply connected linear algebraic $k$-groups $\bG$.

\end{outline}

\marginnote{Lecture 2, 17.10.24}

\end{document}

225 changes: 225 additions & 0 deletions preamble.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,225 @@
\documentclass{tufte-handout}

\usepackage{amsmath}
\usepackage{graphicx}
\setkeys{Gin}{width=\linewidth,totalheight=\textheight,keepaspectratio}

\usepackage{booktabs}
\usepackage{units}
\usepackage{fancyvrb}
\fvset{fontsize=\normalsize}
\usepackage{multicol}
\usepackage{lipsum}
\PassOptionsToPackage{dvipsnames}{xcolor}
\usepackage{xcolor}
\usepackage{amsmath, amsthm, thmtools}
\usepackage{amssymb}
\usepackage{cleveref}
\usepackage{csquotes}
\geometry{
marginparwidth=50mm % width of margin notes
}
%%%%%%%%% mathematical bold %%%%%%%%%%%%%%%%%

\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\Cs}{\bC^\times}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bp}{\mathbb{p}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\Z}{\mathbb{Z}}

%%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%%

\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\renewcommand{\H}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cm}{\mathcal{m}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}

%%%%%%%%% mathematical fraktur %%%%%%%%%%%%%%

\newcommand{\mf}[1]{\mathfrak{#1}}
\newcommand{\fa}{\mathfrak{a}}
\newcommand{\fb}{\mathfrak{b}}
\newcommand{\fc}{\mathfrak{c}}
\newcommand{\fA}{\mathfrak{A}}
\newcommand{\fB}{\mathfrak{B}}
\newcommand{\fC}{\mathfrak{C}}
\newcommand{\fD}{\mathfrak{D}}
\newcommand{\fE}{\mathfrak{E}}
\newcommand{\fF}{\mathfrak{F}}
\newcommand{\fG}{\mathfrak{G}}
\newcommand{\fH}{\mathfrak{H}}
\newcommand{\fI}{\mathfrak{I}}
\newcommand{\fJ}{\mathfrak{J}}
\newcommand{\fK}{\mathfrak{K}}
\newcommand{\fL}{\mathfrak{L}}
\newcommand{\fm}{\mathfrak{m}}
\newcommand{\fN}{\mathfrak{N}}
\newcommand{\fO}{\mathfrak{O}}
\newcommand{\fp}{\mathfrak{p}}
\newcommand{\fQ}{\mathfrak{Q}}
\newcommand{\fq}{\mathfrak{q}}
\newcommand{\fR}{\mathfrak{R}}
\newcommand{\fS}{\mathfrak{S}}
\newcommand{\fT}{\mathfrak{T}}
\newcommand{\fU}{\mathfrak{U}}
\newcommand{\fV}{\mathfrak{V}}
\newcommand{\fW}{\mathfrak{W}}
\newcommand{\fX}{\mathfrak{X}}
\newcommand{\fY}{\mathfrak{Y}}
\newcommand{\fZ}{\mathfrak{Z}}

%%%%%%%%% math operators %%%%%%%%%%%%%%%

\newcommand{\RP}{\mathbb{RP}^2}
\newcommand{\gen}[1]{\langle #1\rangle}
\newcommand{\Id}{\mathrm{Id}}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\ggt}{ggT}
\DeclareMathOperator{\kgv}{kgV}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Iso}{Iso}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\UT}{UT_3(\R)}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\modn}{mod}
\DeclareMathOperator{\stab}{Stab_G}
\DeclareMathOperator{\Th}{Th}
\DeclareMathOperator{\On}{On}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\supp}{supp}

%%%%%%%%% thmtools environments %%%%%%%%%%%%%%%

\declaretheoremstyle[
shaded={
rulecolor=Lavender!35,
rulewidth=2pt,
bgcolor=Lavender!25},
spaceabove=6pt, spacebelow=6pt,
headfont=\normalfont\bfseries, headindent=\parindent,
notefont=\mdseries, notebraces={(}{)},
bodyfont=\normalfont,
postheadspace=0.5em]{lav}

\declaretheoremstyle[
shaded={
rulecolor=Salmon!12,
rulewidth=2pt,
bgcolor=Salmon!8},
spaceabove=6pt, spacebelow=6pt,
headfont=\normalfont\bfseries, headindent=\parindent,
notefont=\mdseries, notebraces={(}{)},
bodyfont=\normalfont,
postheadspace=0.5em]{red}

\declaretheoremstyle[
shaded={
rulecolor=RoyalBlue!8,
rulewidth=2pt,
bgcolor=RoyalBlue!5},
spaceabove=6pt, spacebelow=6pt,
headfont=\normalfont\bfseries, headindent=\parindent,
notefont=\mdseries, notebraces={(}{)},
bodyfont=\normalfont,
postheadspace=0.5em]{lightblue}

\declaretheorem[
name=Definition,
style=lav,
numberwithin=section,
refname={definition, definitions},
Refname={Definition, Definitions}
]{definition}

\declaretheorem[
name=Theorem,
style=blue,
sibling=definition
]{theorem}

\declaretheorem[
name=Lemma,
style=lightblue,
sibling=definition
]{lemma}

\declaretheorem[
name=Proposition,
style=lightblue,
sibling=definition
]{proposition}

\declaretheorem[
name=Korollar,
style=lightblue,
sibling=definition
]{corollary}

\declaretheorem[
name=Exercise,
style=lightblue,
sibling=definition
]{exercise}

\declaretheorem[
name=Note,
style=red,
sibling=definition
]{note}


\setlength{\headheight}{14.0pt}
Loading

0 comments on commit cb38f40

Please sign in to comment.