-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit cb38f40
Showing
5 changed files
with
2,518 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
\input{preamble.tex} | ||
\title{Galois Cohomology of Algebraic Groups} | ||
\author[Ayushi Tsydendorzhiev]{Ayushi Tsydendorzhiev} | ||
\usepackage{enumitem} | ||
\usepackage{stmaryrd} | ||
\usepackage{xhfill} | ||
\usepackage{array} | ||
\usepackage{outlines} | ||
\usepackage{faktor} | ||
\usepackage{float} | ||
\usepackage{mathtools} | ||
\usepackage{tikz-cd} | ||
\usepackage{centernot} | ||
\usepackage{cancel} | ||
\newcommand{\ra}{\rightarrow} | ||
\newcommand{\lra}{\longrightarrow} | ||
\newcommand{\eps}{\varepsilon} | ||
\renewcommand{\P}{\mathbb{P}} | ||
\newcommand{\acts}{\curvearrowright} | ||
\newcommand\Gal[1]{\operatorname{Gal}({#1})} | ||
\renewcommand{\phi}{\varphi} | ||
|
||
\begin{document} | ||
|
||
\maketitle | ||
|
||
\tableofcontents | ||
\clearpage | ||
|
||
\section{Introduction} | ||
|
||
\subsection{Galois group actions} | ||
\marginnote{Lecture 1, 10.10.2024} | ||
\begin{outline} | ||
\0 Let $L/K$ be a Galois extension and $G=\Gal{L/K}$ its Galois group. The Galois group $G$ acts on $L$ via field automorphisms: | ||
\1 Action on the field extension $L$: For $\Q(\sqrt{2})$ its Galois group $\Gal{\Q(\sqrt{2})/\Q}$ acts either by identity or by sending $\sqrt{2}$ to $-\sqrt{2}$. | ||
\1 Action on the dual of the field extension $L^*$: For $\Q(\sqrt{2})^*$ its Galois group acts on $f(x_1,x_2)=x_1\cdot 1 + x_2 \cdot \sqrt{2}$ either by identity or by sending $f$ to $f'=x_1\cdot 1 -x_2 \cdot \sqrt{2}$. | ||
\1 Action on the group of $n$th roots of unity $\mu_n(L)$: | ||
\2 In $\Q(\sqrt{2})$, the $n$th roots of unity consist of $\{-1,1\}$ if $n$ is even and $\{1\}$ if $n$ is odd. Both automorphisms in $\Gal{\Q(\sqrt{2})/\Q}$ leave $\mu_n(\Q)$ fixed, so this tells us that they all belong to the base field (are rational, in this case). | ||
\2 A more interesting example is the $n$th cyclotomic field $\Q(\zeta_n)$.In this field $\mu_n (Q(\zeta_n))=\langle \zeta_n \rangle$, the cyclic group generated by $\zeta_n$. The Galois group $\Gal{Q(\zeta_n)/Q}$ is isomorphic to $(\Z/n\Z)^*$. For $n=5$ (prime), the Galois group is cyclic and consists of $\{1, \zeta_5, \zeta_5^2, \zeta_5^3, \zeta_5^4\}$. The action of the Galois group then permutes the $5$th roots of unity. For $n=8$, the Galois group $\Gal{\Q(\zeta_8)/\Q}$ is isomorphic to $(\Z/8\Z)^*=\{1,3,5,7\}$ and is cyclic of order $4$. The basis of $\Q(\zeta_8)$ over $\Q$ is given by $\{1,\zeta_8,\zeta_8^2, \zeta_8^3\}$. The actions is given as: $\sigma_1$ acts trivially, $\sigma_3$ maps $\zeta_8$ to $\zeta_8^3$, $\sigma_5$ acts by multiplication by $-1$ and $\sigma_7$ maps $\zeta_8$ to $\zeta^7_8$. | ||
\1 Action on the cyclic group $(\Z/n\Z)^*$: same as above. | ||
\1 Action on a finite abelian group $M$: trivial action. | ||
\1 Action on the general linear group $\GL_n(L)$ over a field $L$ of characteristic $0$: $\GL_n(L)$ consists of $n\times n$ invertible matrices over $L$. We have a Galois extension $L/K$. The Galois group acts by applying the field automorphisms to the entries of the matrices, so $\sigma(A)=\sigma(a_{ij}) \forall 1\leq ij \leq n$. The fixed points contain $\GL_n(K)$. | ||
\2 Backstory: The determinant of a $n\times n$ matrix $A$ is defined as | ||
\marginnote{$\sgn(\pi)$ is either even or odd. $+1$ if even and $-1$ if odd.} | ||
$$\det(A) = \sum_{\pi \in S_n} \left( \sgn(\pi) \prod_{i=1}^n a_{i,\pi(i)} \right)$$ | ||
Consider $\sigma(\det (A))$, where $\sigma \in \Gal{L/K}$ is a field automorphism. It distributes over addition and multiplication: | ||
$$\sigma(\det(A)) = \sum_{\pi \in S_n} \left( \sgn(\pi) \prod_{i=1}^n \sigma(a_{i,\pi(i)}) \right)$$ | ||
The signum is either $+1$ or $-1$, so it is always in the base field $K$ and is fixed by $\sigma$. Thus $\sigma(\det(A))=\det(\sigma(A))$. So the action of the Galois group preserves determinants. | ||
\end{outline} | ||
|
||
\subsection{The fixed point functor and exact sequences} | ||
|
||
\begin{outline} | ||
\0 All of these examples are special cases of a more general concept: a group $G$ acting on an algebraic group $\bG \subseteq \GL_n$. | ||
\marginnote{An algebraic group is a matrix group defined by polynomial conditions, at least this is what \enquote{The theory of group schemes of | ||
finite type over a field.} by Milne says. I guess this is the consequence of Chevalley theorem?} | ||
|
||
When studying group actions, we're often interested in fixed points | ||
$$A^G =\{a\in A \mid \forall \sigma \in G: \sigma a = a \}$$ | ||
Here, $A^G$ represents the set of all elements in $A$ that are fixed by every element of $G$. To study fixed points more systematically, we introduce the fixed point functor $-^G$. This functor takes a $\Z G$-module and returns its fixed points. We're particularly interested in how this functor behaves with respect to exact sequences. | ||
|
||
\begin{note} | ||
~\\ | ||
\textbf{Group action perspective}: A $\Z G$-module is an abelian group $A$ endowed with a (left) action $(\sigma, a) \mapsto \sigma a$ of $G$ on $A$ such that for all $\sigma\in G$ the map $\phi_\sigma : a \mapsto \sigma a$ from $A$ to $A$ is a morphism of abelian groups. This implies that the action of $G$ is distributive, $\phi_\sigma (ab) = \phi_\sigma (a) + \phi_\sigma (b)$.\\ | ||
\textbf{Ring module perspective}: Equivalently, a $\Z G$-module is a module over the group ring $\Z[G]$, where elements consist of formal linear combinations of elements from group $G$ with integer coefficients, so something like $3g_1+4g_2+10g_3 \in \Z[G]$. It contains both $\Z$ and $G$ as subrings.\\ | ||
The $\Z[G]$-module structure encapsulates both the abelian group structure of $A$ and the $G$-action on $A$, which leads to the key insight: | ||
$$\{\text{module over } \Z[G]\} \leftrightarrow \{\text{abelian group $A$ with $G$-action}\}$$ | ||
\end{note} | ||
|
||
\begin{lemma} | ||
Consider an exact sequence of $\Z G$-modules: | ||
$$\begin{tikzcd} | ||
0\arrow[r] & A \arrow[r, "f"] & B\arrow[r, "g"] & C\arrow[r, "h"] & 0 | ||
\end{tikzcd}$$ | ||
Applying the fixed point functor $-^G$ to this sequence yields: | ||
$$\begin{tikzcd} | ||
0\arrow[r] & A^G \arrow[r, "f^G"] & B^G \arrow[r, "g^G"] & C^G | ||
\end{tikzcd}$$ | ||
This new sequence is exact in Ab (the category of abelian groups). Thus the functor $-^G$ is left-exact, meaning it preserves exactness at the left end of the sequence. | ||
\end{lemma} | ||
|
||
\1 A natural question arises: Is the fixed point functor also right-exact? If such a lifting always exists, then the fixed point functor preserves exactness at $C$, making it right-exact. | ||
If not, we've discovered an obstruction that tells us something about the Galois action and the structure of our groups. | ||
\1 To investigate this, we need to check if $\ker h^G = \im g^G$, or equivalently, if $\im g^G = C^G$. Breaking this down: | ||
\2 Take any $c \in C^G$. | ||
\2 Since $C^G \subseteq C$, there exists a $b \in B$ such that $g(b) = c$. | ||
\2 If $b$ were fixed by $G$, we'd be done. But it might not be. | ||
\marginnote{Why $\sigma b = b$?} | ||
\3 Consider $\sigma b - b$ for any $\sigma \in G$. We have $g(\sigma b - b) = g(\sigma b) - g(b)= \sigma g(b)-g(b)=\sigma c - c$. | ||
\3 Since $c\in C^G$, $\sigma c - c = 0$ and $(\sigma b-b)\in \ker g$. | ||
\3 By exactness, $\ker g = \im f$, so $\sigma b - b \in \im f$. | ||
\3 We can view this as an element of $A$ (considering $f$ as an inclusion $A \subseteq B$). | ||
\1[] So the question of right-exactness boils down to whether or not every $G$-invariant element of $C$ can be lifted to a $G$-invariant element of $B$ and the obstruction to it lives inside $A$. | ||
\1 This analysis leads us to define a map (for a given $c\in C^G$): | ||
$$\phi: G \to A, \quad \sigma \mapsto \sigma b - b =: a_\sigma$$ | ||
This map is called a crossed homomorphism (also known as a derivation or 1-cocycle). It measures how far $b$ is from being $G$-invariant. If $b$ were $G$-invariant, this map would be identically $0$. | ||
|
||
\begin{proposition} | ||
The map $\sigma \mapsto a_\sigma$ satisfies: | ||
$$a_{\sigma\tau} = a_\sigma + \sigma a_\tau$$ | ||
This property is what defines a crossed homomorphism. | ||
\end{proposition} | ||
|
||
\1 \textbf{In the abelian case}, we define | ||
\2 $Z^1(G,A)=\{a':G\ra A \mid a'_{\sigma \tau} = a'_{\sigma}+\sigma a'_{\tau}\}$, the set of all crossed homomorphisms from $G$ to $A$. | ||
\2 $B^1(G,A)=\{a:\sigma \in Z^1(G,A) \mid \exists a'\in A : a_\sigma = \sigma a' - a'\}$. | ||
\2 The quotient $H^1(G,A) = Z^1(G,A) / B^1(G,A)$ is called the \textbf{first cohomology group} of $G$ with coefficients in $A$. It measures the obstruction to the right-exactness of the fixed point functor. | ||
\marginnote{The functor $A\mapsto H^1(G,A)$ is a derived functor of the $A\mapsto A^G$ functor.} | ||
|
||
\1[] The obstructions for right-exactness: find $\sigma b -b \in A$ such that it is $0$ under projection in $Z^1(G,A)/B^1(G,A)$. It is given by $\delta(c) = [a_\sigma]\in H^1(G,A) = Z^1(G,A)/B^1(G,A)$. We can extend our original sequence to a longer exact sequence: | ||
$$\begin{tikzcd}[column sep=small] | ||
0 \arrow[r] & A^G \arrow[r] & B^G \arrow[r] & C^G \arrow[r, "\delta"] & H^1(G,A) \arrow[r] & H^1(G,B) \arrow[r] & H^1(G,C) \arrow[r] & 0 | ||
\end{tikzcd}$$ | ||
This sequence is exact in Ab, and the map $\delta$ (called the connecting homomorphism) measures the failure of right-exactness of the fixed point functor. | ||
|
||
\begin{exercise} | ||
Show that $H^1(G,-)$ is functorial and | ||
$$\begin{tikzcd}[column sep=small] | ||
0 \arrow[r] & A^G \arrow[r] & B^G \arrow[r] & C^G \arrow[r] & H^1(G,A) \arrow[r] & H^1(G,B) \arrow[r] & H^1(G,C) \arrow[r] & 0 | ||
\end{tikzcd}$$ | ||
is exact. Find example with $\delta \neq 0$. | ||
\end{exercise} | ||
|
||
\1 \textbf{In the non-abelian case}, we define | ||
\2 $H^0(G,A)=A^G$, the fixed points as before. | ||
\2 $H^1(G,A)=Z^1(F,A)/\sim$, where $\sim$ is an equivalence relation defined by: $a_\sigma \sim b_\sigma \iff \exists a' \in A : b_\sigma = (a')^{-1} \cdot a_\sigma \cdot \prescript{\sigma}{}{a'}$. | ||
\marginnote{We cannot expect $B^1(G,A)$ to be a subgroup. Why?} | ||
\marginnote{$\prescript{\sigma}{}{a}$ denotes the action of $\sigma$ on $a$.} | ||
\1[] In this case, $H^1(G,A)$ doesn't have a group structure, but it's a pointed set (a set with a distinguished element). We can still define a notion of exactness for sequences of pointed sets. | ||
\marginnote{Exactness in pointed sets $(A,*)$ is defined as $\im f = \ker g = g^{-1}(*)$} | ||
|
||
\marginnote{$A\leq_G B$ is $G$-equivariant inclusion.} | ||
\begin{proposition} | ||
For $A\leq_G B$, we obtain $G\acts B/A$ and | ||
$$\begin{tikzcd}[column sep=small] | ||
1 \arrow[r] & H^0(G,A) \arrow[r] & H^0(G,B) \arrow[r] & H^0(G,C) \arrow[r] & H^1(G,A) \arrow[r] & H^1(G,B) | ||
\end{tikzcd}$$ | ||
is exact. | ||
\end{proposition} | ||
|
||
This is the \textbf{Galois cohomology}. Why do we care? In the non-commutative case $H^1(G,A)$ classifies \enquote{K-objects}. In our lecture we will use this to classify simple and simply connected linear algebraic $k$-groups $\bG$. | ||
|
||
\end{outline} | ||
|
||
\marginnote{Lecture 2, 17.10.24} | ||
|
||
\end{document} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
\documentclass{tufte-handout} | ||
|
||
\usepackage{amsmath} | ||
\usepackage{graphicx} | ||
\setkeys{Gin}{width=\linewidth,totalheight=\textheight,keepaspectratio} | ||
|
||
\usepackage{booktabs} | ||
\usepackage{units} | ||
\usepackage{fancyvrb} | ||
\fvset{fontsize=\normalsize} | ||
\usepackage{multicol} | ||
\usepackage{lipsum} | ||
\PassOptionsToPackage{dvipsnames}{xcolor} | ||
\usepackage{xcolor} | ||
\usepackage{amsmath, amsthm, thmtools} | ||
\usepackage{amssymb} | ||
\usepackage{cleveref} | ||
\usepackage{csquotes} | ||
\geometry{ | ||
marginparwidth=50mm % width of margin notes | ||
} | ||
%%%%%%%%% mathematical bold %%%%%%%%%%%%%%%%% | ||
|
||
\newcommand{\bA}{\mathbb{A}} | ||
\newcommand{\bB}{\mathbb{B}} | ||
\newcommand{\bC}{\mathbb{C}} | ||
\newcommand{\Cs}{\bC^\times} | ||
\newcommand{\bD}{\mathbb{D}} | ||
\newcommand{\bE}{\mathbb{E}} | ||
\newcommand{\F}{\mathbb{F}} | ||
\newcommand{\bF}{\mathbb{F}} | ||
\newcommand{\bG}{\mathbb{G}} | ||
\newcommand{\bH}{\mathbb{H}} | ||
\newcommand{\bI}{\mathbb{I}} | ||
\newcommand{\bJ}{\mathbb{J}} | ||
\newcommand{\bK}{\mathbb{K}} | ||
\newcommand{\bL}{\mathbb{L}} | ||
\newcommand{\bM}{\mathbb{M}} | ||
\newcommand{\N}{\mathbb{N}} | ||
\newcommand{\bO}{\mathbb{O}} | ||
\newcommand{\bP}{\mathbb{P}} | ||
\newcommand{\bp}{\mathbb{p}} | ||
\newcommand{\Q}{\mathbb{Q}} | ||
\newcommand{\R}{\mathbb{R}} | ||
\newcommand{\bS}{\mathbb{S}} | ||
\newcommand{\bT}{\mathbb{T}} | ||
\newcommand{\bU}{\mathbb{U}} | ||
\newcommand{\bV}{\mathbb{V}} | ||
\newcommand{\bW}{\mathbb{W}} | ||
\newcommand{\bX}{\mathbb{X}} | ||
\newcommand{\bY}{\mathbb{Y}} | ||
\newcommand{\Z}{\mathbb{Z}} | ||
|
||
%%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
\newcommand{\mc}[1]{\mathcal{#1}} | ||
\newcommand{\cA}{\mathcal{A}} | ||
\newcommand{\cB}{\mathcal{B}} | ||
\newcommand{\cC}{\mathcal{C}} | ||
\newcommand{\cD}{\mathcal{D}} | ||
\newcommand{\cE}{\mathcal{E}} | ||
\newcommand{\cF}{\mathcal{F}} | ||
\newcommand{\cG}{\mathcal{G}} | ||
\renewcommand{\H}{\mathcal{H}} | ||
\newcommand{\cI}{\mathcal{I}} | ||
\newcommand{\cJ}{\mathcal{J}} | ||
\newcommand{\cK}{\mathcal{K}} | ||
\newcommand{\cL}{\mathcal{L}} | ||
\newcommand{\cM}{\mathcal{M}} | ||
\newcommand{\cm}{\mathcal{m}} | ||
\newcommand{\cN}{\mathcal{N}} | ||
\newcommand{\cO}{\mathcal{O}} | ||
\newcommand{\cP}{\mathcal{P}} | ||
\newcommand{\cQ}{\mathcal{Q}} | ||
\newcommand{\cR}{\mathcal{R}} | ||
\newcommand{\cS}{\mathcal{S}} | ||
\newcommand{\cT}{\mathcal{T}} | ||
\newcommand{\cU}{\mathcal{U}} | ||
\newcommand{\cV}{\mathcal{V}} | ||
\newcommand{\cW}{\mathcal{W}} | ||
\newcommand{\cX}{\mathcal{X}} | ||
\newcommand{\cY}{\mathcal{Y}} | ||
\newcommand{\cZ}{\mathcal{Z}} | ||
|
||
%%%%%%%%% mathematical fraktur %%%%%%%%%%%%%% | ||
|
||
\newcommand{\mf}[1]{\mathfrak{#1}} | ||
\newcommand{\fa}{\mathfrak{a}} | ||
\newcommand{\fb}{\mathfrak{b}} | ||
\newcommand{\fc}{\mathfrak{c}} | ||
\newcommand{\fA}{\mathfrak{A}} | ||
\newcommand{\fB}{\mathfrak{B}} | ||
\newcommand{\fC}{\mathfrak{C}} | ||
\newcommand{\fD}{\mathfrak{D}} | ||
\newcommand{\fE}{\mathfrak{E}} | ||
\newcommand{\fF}{\mathfrak{F}} | ||
\newcommand{\fG}{\mathfrak{G}} | ||
\newcommand{\fH}{\mathfrak{H}} | ||
\newcommand{\fI}{\mathfrak{I}} | ||
\newcommand{\fJ}{\mathfrak{J}} | ||
\newcommand{\fK}{\mathfrak{K}} | ||
\newcommand{\fL}{\mathfrak{L}} | ||
\newcommand{\fm}{\mathfrak{m}} | ||
\newcommand{\fN}{\mathfrak{N}} | ||
\newcommand{\fO}{\mathfrak{O}} | ||
\newcommand{\fp}{\mathfrak{p}} | ||
\newcommand{\fQ}{\mathfrak{Q}} | ||
\newcommand{\fq}{\mathfrak{q}} | ||
\newcommand{\fR}{\mathfrak{R}} | ||
\newcommand{\fS}{\mathfrak{S}} | ||
\newcommand{\fT}{\mathfrak{T}} | ||
\newcommand{\fU}{\mathfrak{U}} | ||
\newcommand{\fV}{\mathfrak{V}} | ||
\newcommand{\fW}{\mathfrak{W}} | ||
\newcommand{\fX}{\mathfrak{X}} | ||
\newcommand{\fY}{\mathfrak{Y}} | ||
\newcommand{\fZ}{\mathfrak{Z}} | ||
|
||
%%%%%%%%% math operators %%%%%%%%%%%%%%% | ||
|
||
\newcommand{\RP}{\mathbb{RP}^2} | ||
\newcommand{\gen}[1]{\langle #1\rangle} | ||
\newcommand{\Id}{\mathrm{Id}} | ||
\DeclareMathOperator{\im}{im} | ||
\DeclareMathOperator{\ggt}{ggT} | ||
\DeclareMathOperator{\kgv}{kgV} | ||
\DeclareMathOperator{\Aut}{Aut} | ||
\DeclareMathOperator{\Hom}{Hom} | ||
\DeclareMathOperator{\Iso}{Iso} | ||
\DeclareMathOperator{\ord}{ord} | ||
\DeclareMathOperator{\rad}{rad} | ||
\DeclareMathOperator{\GL}{GL} | ||
\DeclareMathOperator{\SL}{SL} | ||
\DeclareMathOperator{\UT}{UT_3(\R)} | ||
\DeclareMathOperator{\id}{id} | ||
\DeclareMathOperator{\sgn}{sgn} | ||
\DeclareMathOperator{\modn}{mod} | ||
\DeclareMathOperator{\stab}{Stab_G} | ||
\DeclareMathOperator{\Th}{Th} | ||
\DeclareMathOperator{\On}{On} | ||
\DeclareMathOperator{\Spec}{Spec} | ||
\DeclareMathOperator{\coker}{coker} | ||
\DeclareMathOperator{\supp}{supp} | ||
|
||
%%%%%%%%% thmtools environments %%%%%%%%%%%%%%% | ||
|
||
\declaretheoremstyle[ | ||
shaded={ | ||
rulecolor=Lavender!35, | ||
rulewidth=2pt, | ||
bgcolor=Lavender!25}, | ||
spaceabove=6pt, spacebelow=6pt, | ||
headfont=\normalfont\bfseries, headindent=\parindent, | ||
notefont=\mdseries, notebraces={(}{)}, | ||
bodyfont=\normalfont, | ||
postheadspace=0.5em]{lav} | ||
|
||
\declaretheoremstyle[ | ||
shaded={ | ||
rulecolor=Salmon!12, | ||
rulewidth=2pt, | ||
bgcolor=Salmon!8}, | ||
spaceabove=6pt, spacebelow=6pt, | ||
headfont=\normalfont\bfseries, headindent=\parindent, | ||
notefont=\mdseries, notebraces={(}{)}, | ||
bodyfont=\normalfont, | ||
postheadspace=0.5em]{red} | ||
|
||
\declaretheoremstyle[ | ||
shaded={ | ||
rulecolor=RoyalBlue!8, | ||
rulewidth=2pt, | ||
bgcolor=RoyalBlue!5}, | ||
spaceabove=6pt, spacebelow=6pt, | ||
headfont=\normalfont\bfseries, headindent=\parindent, | ||
notefont=\mdseries, notebraces={(}{)}, | ||
bodyfont=\normalfont, | ||
postheadspace=0.5em]{lightblue} | ||
|
||
\declaretheorem[ | ||
name=Definition, | ||
style=lav, | ||
numberwithin=section, | ||
refname={definition, definitions}, | ||
Refname={Definition, Definitions} | ||
]{definition} | ||
|
||
\declaretheorem[ | ||
name=Theorem, | ||
style=blue, | ||
sibling=definition | ||
]{theorem} | ||
|
||
\declaretheorem[ | ||
name=Lemma, | ||
style=lightblue, | ||
sibling=definition | ||
]{lemma} | ||
|
||
\declaretheorem[ | ||
name=Proposition, | ||
style=lightblue, | ||
sibling=definition | ||
]{proposition} | ||
|
||
\declaretheorem[ | ||
name=Korollar, | ||
style=lightblue, | ||
sibling=definition | ||
]{corollary} | ||
|
||
\declaretheorem[ | ||
name=Exercise, | ||
style=lightblue, | ||
sibling=definition | ||
]{exercise} | ||
|
||
\declaretheorem[ | ||
name=Note, | ||
style=red, | ||
sibling=definition | ||
]{note} | ||
|
||
|
||
\setlength{\headheight}{14.0pt} |
Oops, something went wrong.