A python project to find anomaly in an Xray image.
The aim is detect pneumonia in a thorax radiography and explain AI decision.
Training data source : database link
I use a VGG16
model.
You need to create a conda environment to increase your training performances :
source ~/.zshrc
conda create -n tf_m1 python=3.11
conda activate tf_m1
conda install -c apple tensorflow-deps
pip install tensorflow-macos
pip install tensorflow-metal
First create .env
file :
mv .env.example .env
Then fill .env
file with your values.
In your conda env :
python train.py
-------------------- Dataset Summary --------------------
Number of train images : 4684
Number of test images : 586
Number of validation images : 586
Shape of each images : (224, 224, 3)
---------------------------------------------------------
loss: 0.0611 - accuracy: 0.9795
Source : tensorboard-doc
%load_ext tensorboard
%tensorboard --logdir logs/fit