forked from sail-sg/Adan
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
89 changed files
with
18,455 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models | ||
|
||
We provide the instruction to modify the official training and fine-tuning files used in [MAE](https://github.com/facebookresearch/mae) such that you can use Adan to train MAE. **Please follow MAE instruction to install necessary packages.** | ||
|
||
|
||
|
||
## Environment | ||
|
||
Our experiments for this task are based on the following pkg version. | ||
|
||
```python | ||
torch.__version__ = '1.7.1+cu110' | ||
torchvision.__version__ = '0.8.2+cu110' | ||
timm.__version__ = '0.4.5' | ||
torchaudio.__version__ = '0.7.2' | ||
``` | ||
If you want to strictly follow our environment, please refer to our released docker image [xyxie/adan-image:mae](https://hub.docker.com/repository/docker/xyxie/adan-image). | ||
|
||
|
||
|
||
## Usage of Adan for MAE | ||
|
||
### Two steps to use Adan | ||
|
||
**Step 1.** add the following parameters to the `main_pretrain.py` and `main_finetune.py`. | ||
|
||
```python | ||
parser.add_argument('--use-adan', action='store_true', default=False, help='whether to use Adan') | ||
parser.add_argument('--max-grad-norm', type=float, default=0.0, help='if the l2 norm is large than this hyper-parameter, then we clip the gradient (default: 0.0, no gradient clip)') | ||
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='optimizer epsilon to avoid the bad case where second-order moment is zero (default: None, use opt default 1e-8 in adan)') | ||
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='optimizer betas in Adan (default: None, use opt default [0.98, 0.92, 0.99] in Adan)') | ||
``` | ||
|
||
* `use-adan`: whether to use Adan. The default optimizer is AdamW. | ||
|
||
* `max-grad-norm`: it determines whether to perform gradient clipping. | ||
|
||
* `opt-eps`: optimizer epsilon to avoid the bad case where second-order moment is zero. | ||
|
||
* `opt-betas`: optimizer betas for Adan. | ||
|
||
|
||
|
||
**Step 2.** creat the Adan optimizer as follows. In this step, you can directly replace the vanilla optimizer creator : | ||
|
||
```python | ||
# following timm: set wd as 0 for bias and norm layers | ||
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay) | ||
if args.use_adan: | ||
if args.bias_decay: | ||
param = model_without_ddp.parameters() | ||
else: | ||
param = param_groups | ||
args.weight_decay = 0.0 | ||
optimizer = Adan(param, weight_decay=args.weight_decay, | ||
lr=args.lr, betas=args.opt_betas, | ||
eps = args.opt_eps, max_grad_norm=args.max_grad_norm) | ||
else: | ||
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) | ||
``` | ||
|
||
|
||
|
||
## MAE Pre-training | ||
|
||
```python | ||
python main_pretrain.py \ | ||
--batch_size 256 --accum_iter 1 \ | ||
--model ${MODEL_NAME} --norm_pix_loss --mask_ratio 0.75 \ | ||
--epochs 800 \ | ||
--lr ${LR} --weight_decay 0.02 --warmup_epochs ${WR_EPOCH} \ | ||
--min_lr ${MIN_LR} \ | ||
--opt-betas 0.98 0.92 0.90 --opt-eps 1e-8 --max-grad-norm 10.0 \ | ||
--use-adan \ | ||
--data_path ${IMAGENET_DIR} | ||
--output_dir ${OUT_DIR} | ||
``` | ||
|
||
- The pre-training file `main_pretrain.py` comes from [MAE](https://github.com/facebookresearch/mae). | ||
- We use **16** A100 GPUs for MAE-Base and **32** A100 GPUs for MAE-Large. | ||
- There are some differences between hyper-parameters for MAE-Base and MAE-Large | ||
|
||
| | MODEL_NAME | LR | MIN_LR | WR_EPOCH | | ||
| :-------: | :-------------------: | :----: | :----: | :------: | | ||
| MAE-Base | mae_vit_base_patch16 | 2.0e-3 | 1e-8 | 40 | | ||
| MAE-Large | mae_vit_large_patch16 | 2.2e-3 | 1e-4 | 80 | | ||
|
||
|
||
|
||
## MAE Fine-tuning | ||
|
||
```python | ||
python main_finetune.py \ | ||
--accum_iter 1 \ | ||
--batch_size 256 \ | ||
--model ${MODEL_NAME} \ | ||
--finetune ${PATH to Ptr-trained Model} \ | ||
--epochs ${EPOCH} \ | ||
--lr 1.5e-2 --layer_decay ${LAYER_DECAY} \ | ||
--min-lr ${MIN_LR} \ | ||
--opt-betas 0.98 0.92 0.99 \ | ||
--opt-eps 1e-8 --max-grad-norm 0 \ | ||
--use-adan --warmup-epochs ${WR_EPOCH} \ | ||
--weight_decay ${WD} --drop_path ${DROP_PATH} \ | ||
--mixup 0.8 --cutmix 1.0 --reprob 0.25 \ | ||
--dist_eval --data_path ${IMAGENET_DIR} | ||
``` | ||
|
||
- The fine-tune file `main_finetune.py` comes from [MAE](https://github.com/facebookresearch/mae). | ||
- We use **16** A100 GPUs for MAE-Base and **32** A100 GPUs for MAE-Large. | ||
- There are some differences between hyper-parameters for MAE-Base and MAE-Large | ||
|
||
| | MODEL_NAME | EPOCH | MIN_LR | LAYER_DECAY | WR_EPOCH | WD | DROP_PATH | | ||
| :-------: | :---------------: | :---: | :----: | :---------: | :------: | ---- | :-------: | | ||
| MAE-Base | vit_base_patch16 | 100 | 1e-6 | 0.65 | 40 | 5e-3 | 0.1 | | ||
| MAE-Large | vit_large_patch16 | 50 | 1e-5 | 0.75 | 10 | 1e-3 | 0.2 | | ||
|
||
|
||
|
||
## Results and Logs | ||
|
||
| | MAE-Base | MAE-Large | | ||
| :------: | :----------------------------------------------------------: | :----------------------------------------------------------: | | ||
| Top-1 Acc. (%) | 83.8 | 85.9 | | ||
| download | [log-pretrain](./exp_results/MAE/base/log_base_pretrain.txt)/[log-finetune](./exp_results/MAE/base/log_base_ft.txt)/model | [log-pretrain](./exp_results/MAE/large/log_large_pretrain.txt)/[log-finetune](./exp_results/MAE/large/log_large_ft.txt)/model | | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
# Copyright 2022 Garena Online Private Limited | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import math | ||
import torch | ||
from torch.optim.optimizer import Optimizer | ||
from timm.utils import * | ||
|
||
|
||
class Adan(Optimizer): | ||
""" | ||
Implements a pytorch variant of Adan | ||
Adan was proposed in | ||
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. | ||
https://arxiv.org/abs/2208.06677 | ||
Arguments: | ||
params (iterable): iterable of parameters to optimize or dicts defining parameter groups. | ||
lr (float, optional): learning rate. (default: 1e-3) | ||
betas (Tuple[float, float, flot], optional): coefficients used for computing | ||
running averages of gradient and its norm. (default: (0.98, 0.92, 0.99)) | ||
eps (float, optional): term added to the denominator to improve | ||
numerical stability. (default: 1e-8) | ||
weight_decay (float, optional): decoupled weight decay (L2 penalty) (default: 0) | ||
max_grad_norm (float, optional): value used to clip | ||
global grad norm (default: 0.0 no clip) | ||
no_prox (bool): how to perform the decoupled weight decay (default: False) | ||
""" | ||
|
||
def __init__(self, params, lr=1e-3, betas=(0.98, 0.92, 0.99), eps=1e-8, | ||
weight_decay=0.0, max_grad_norm=0.0, no_prox=False): | ||
if not 0.0 <= max_grad_norm: | ||
raise ValueError("Invalid Max grad norm: {}".format(max_grad_norm)) | ||
if not 0.0 <= lr: | ||
raise ValueError("Invalid learning rate: {}".format(lr)) | ||
if not 0.0 <= eps: | ||
raise ValueError("Invalid epsilon value: {}".format(eps)) | ||
if not 0.0 <= betas[0] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | ||
if not 0.0 <= betas[1] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | ||
if not 0.0 <= betas[2] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) | ||
defaults = dict(lr=lr, betas=betas, eps=eps, | ||
weight_decay=weight_decay, | ||
max_grad_norm=max_grad_norm, no_prox=no_prox) | ||
super(Adan, self).__init__(params, defaults) | ||
|
||
def __setstate__(self, state): | ||
super(Adan, self).__setstate__(state) | ||
for group in self.param_groups: | ||
group.setdefault('no_prox', False) | ||
|
||
@torch.no_grad() | ||
def restart_opt(self): | ||
for group in self.param_groups: | ||
group['step'] = 0 | ||
for p in group['params']: | ||
if p.requires_grad: | ||
state = self.state[p] | ||
# State initialization | ||
|
||
# Exponential moving average of gradient values | ||
state['exp_avg'] = torch.zeros_like(p) | ||
# Exponential moving average of squared gradient values | ||
state['exp_avg_sq'] = torch.zeros_like(p) | ||
# Exponential moving average of gradient difference | ||
state['exp_avg_diff'] = torch.zeros_like(p) | ||
|
||
@torch.no_grad() | ||
def step(self): | ||
""" | ||
Performs a single optimization step. | ||
""" | ||
if self.defaults['max_grad_norm'] > 0: | ||
device = self.param_groups[0]['params'][0].device | ||
global_grad_norm = torch.zeros(1, device=device) | ||
|
||
max_grad_norm = torch.tensor(self.defaults['max_grad_norm'], device=device) | ||
for group in self.param_groups: | ||
|
||
for p in group['params']: | ||
if p.grad is not None: | ||
grad = p.grad | ||
global_grad_norm.add_(grad.pow(2).sum()) | ||
|
||
global_grad_norm = torch.sqrt(global_grad_norm) | ||
|
||
clip_global_grad_norm = torch.clamp(max_grad_norm / (global_grad_norm + group['eps']), max=1.0) | ||
else: | ||
clip_global_grad_norm = 1.0 | ||
|
||
for group in self.param_groups: | ||
beta1, beta2, beta3 = group['betas'] | ||
# assume same step across group now to simplify things | ||
# per parameter step can be easily support by making it tensor, or pass list into kernel | ||
if 'step' in group: | ||
group['step'] += 1 | ||
else: | ||
group['step'] = 1 | ||
|
||
bias_correction1 = 1.0 - beta1 ** group['step'] | ||
|
||
bias_correction2 = 1.0 - beta2 ** group['step'] | ||
|
||
bias_correction3 = 1.0 - beta3 ** group['step'] | ||
|
||
for p in group['params']: | ||
if p.grad is None: | ||
continue | ||
|
||
state = self.state[p] | ||
if len(state) == 0: | ||
state['exp_avg'] = torch.zeros_like(p) | ||
state['exp_avg_sq'] = torch.zeros_like(p) | ||
state['exp_avg_diff'] = torch.zeros_like(p) | ||
|
||
grad = p.grad.mul_(clip_global_grad_norm) | ||
if 'pre_grad' not in state or group['step'] == 1: | ||
state['pre_grad'] = grad | ||
|
||
copy_grad = grad.clone() | ||
|
||
exp_avg, exp_avg_sq, exp_avg_diff = state['exp_avg'], state['exp_avg_sq'], state['exp_avg_diff'] | ||
diff = grad - state['pre_grad'] | ||
|
||
update = grad + beta2 * diff | ||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t | ||
exp_avg_diff.mul_(beta2).add_(diff, alpha=1 - beta2) # diff_t | ||
exp_avg_sq.mul_(beta3).addcmul_(update, update, value=1 - beta3) # n_t | ||
|
||
denom = ((exp_avg_sq).sqrt() / math.sqrt(bias_correction3)).add_(group['eps']) | ||
update = ((exp_avg / bias_correction1 + beta2 * exp_avg_diff / bias_correction2)).div_(denom) | ||
|
||
if group['no_prox']: | ||
p.data.mul_(1 - group['lr'] * group['weight_decay']) | ||
p.add_(update, alpha=-group['lr']) | ||
else: | ||
p.add_(update, alpha=-group['lr']) | ||
p.data.div_(1 + group['lr'] * group['weight_decay']) | ||
|
||
state['pre_grad'] = copy_grad |
Oops, something went wrong.