Skip to content
This repository has been archived by the owner on Feb 11, 2023. It is now read-only.

Commit

Permalink
ANHIR submission (#44)
Browse files Browse the repository at this point in the history
* add experiment name
* update eval. submission
* eval: jit filter landmarks
* update compute stats
* fix cols swap in eval. submission
* ext. evaluate tissue-state
* add codecov info
* update docs
* refactor splitext
* fix pkg setup
* update CI

* update Results ipynb
* exporting figures
* update drawing (cmap)
* elastix params for ANHIR
* update visual
  • Loading branch information
Borda committed Nov 19, 2019
1 parent 43e4ca6 commit ec2ca0d
Show file tree
Hide file tree
Showing 31 changed files with 2,348 additions and 1,310 deletions.
5 changes: 4 additions & 1 deletion .codecov.yml
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
#see https://github.com/codecov/support/wiki/Codecov-Yaml
# see https://docs.codecov.io/docs/codecov-yaml
# Validation check:
# $ curl --data-binary @.codecov.yml https://codecov.io/validate

#codecov:
# notify:
# require_ci_to_pass: yes
Expand Down
6 changes: 4 additions & 2 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
# this file is *not* meant to cover or endorse the use of travis, but rather to
# help confirm pull requests to this project.

dist: bionic # Ubuntu 18.04

env:
global:
- DISPLAY=""
Expand Down Expand Up @@ -72,8 +74,8 @@ script:
- python bm_experiments/bm_comp_perform.py -o ./results -n 1
- python birl/bm_template.py -t ./data_images/pairs-imgs-lnds_mix.csv -o ./results --visual --unique -cfg configs/sample_config.yaml
- rm ./data_images/*_/*/*_HE.csv # remove target landmarks from histol. tissue
- python birl/bm_template.py -t ./data_images/pairs-imgs-lnds_histol.csv -d ./data_images -o ./results --preprocessing matching-rgb gray -cfg configs/sample_config.yaml
- python bm_experiments/evaluate_experiment.py -d ./data_images -e ./results/BmTemplate --visual
- python birl/bm_template.py -n anhir -t ./data_images/pairs-imgs-lnds_histol.csv -d ./data_images -o ./results --preprocessing matching-rgb gray -cfg configs/sample_config.yaml
- python bm_experiments/evaluate_experiment.py -d ./data_images -e ./results/BmTemplate_anhir --visual

after_success:
- coverage report
Expand Down
2 changes: 1 addition & 1 deletion appveyor.yml
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ test_script:
- tox -v --sitepackages --parallel auto
- mkdir results && touch configs/sample_config.yaml
- python bm_experiments/bm_comp_perform.py -o ./results -n 1
- python birl/bm_template.py -t ./data_images/pairs-imgs-lnds_mix.csv -o ./results --preprocessing matching-rgb gray --unique --visual -cfg configs/sample_config.yaml
- python birl/bm_template.py -n anhir -t ./data_images/pairs-imgs-lnds_mix.csv -o ./results --preprocessing matching-rgb gray --unique --visual -cfg configs/sample_config.yaml

on_success:
- coverage report
Expand Down
12 changes: 6 additions & 6 deletions birl/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,12 @@
traceback.print_exc()


__version__ = '0.2.3'
__author__ = 'Jiri Borovec'
__author_email__ = '[email protected]'
__license__ = 'BSD 3-clause'
__homepage__ = 'https://borda.github.io/BIRL',
__copyright__ = 'Copyright (c) 2014-2019, %s.' % __author__
__version__ = "0.2.3"
__author__ = "Jiri Borovec"
__author_email__ = "[email protected]"
__license__ = "BSD 3-clause"
__homepage__ = "https://borda.github.io/BIRL",
__copyright__ = "Copyright (c) 2014-2019, %s." % __author__
__doc__ = 'BIRL: Benchmark on Image Registration methods with Landmark validation'
__long_doc__ = "# %s" % __doc__ + """
Expand Down
123 changes: 102 additions & 21 deletions birl/benchmark.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# -*- coding: utf-8 -*-
"""
General benchmark template for all registration methods.
It also serves for evaluating the input registration pairs
Expand Down Expand Up @@ -25,10 +26,11 @@
import pandas as pd
from skimage.color import rgb2gray

# this is used while calling this file as a script
sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root
from .utilities.data_io import (
update_path, create_folder, image_sizes, load_landmarks, load_image, save_image)
from .utilities.dataset import image_histogram_matching
from .utilities.dataset import image_histogram_matching, common_landmarks
from .utilities.evaluate import (
compute_target_regist_error_statistic, compute_affine_transf_diff, compute_tre_robustness)
from .utilities.experiments import (
Expand All @@ -38,6 +40,9 @@
export_figure, draw_image_points, draw_images_warped_landmarks, overlap_two_images)
from .utilities.registration import estimate_affine_transform

#: In case provided dataset and complete (true) dataset differ
COL_PAIRED_LANDMARKS = 'Ration matched landmarks'


class ImRegBenchmark(Experiment):
""" General benchmark class for all registration methods.
Expand Down Expand Up @@ -152,6 +157,10 @@ class ImRegBenchmark(Experiment):
COL_STATUS = 'status'
#: extension to the image column name for temporary pre-process image
COL_IMAGE_EXT_TEMP = ' TEMP'
#: number of landmarks in dataset (min of moving and reference)
COL_NB_LANDMARKS_INPUT = 'nb. dataset landmarks'
#: number of warped landmarks
COL_NB_LANDMARKS_WARP = 'nb. warped landmarks'
#: required experiment parameters
REQUIRED_PARAMS = Experiment.REQUIRED_PARAMS + ['path_table']

Expand Down Expand Up @@ -276,6 +285,7 @@ def _load_data(self):
assert os.path.isfile(self.params['path_table']), \
'path to csv cover is not defined - %s' % self.params['path_table']
self._df_overview = pd.read_csv(self.params['path_table'], index_col=None)
self._df_overview = _df_drop_unnamed(self._df_overview)
assert all(col in self._df_overview.columns for col in self.COVER_COLUMNS), \
'Some required columns are missing in the cover file.'

Expand All @@ -286,8 +296,8 @@ def _run(self):
# load existing result of create new entity
if os.path.isfile(self._path_csv_regist):
logging.info('loading existing csv: "%s"', self._path_csv_regist)
self._df_experiments = pd.read_csv(self._path_csv_regist,
index_col=None)
self._df_experiments = pd.read_csv(self._path_csv_regist, index_col=None)
self._df_experiments = _df_drop_unnamed(self._df_experiments)
if 'ID' in self._df_experiments.columns:
self._df_experiments.set_index('ID', inplace=True)
else:
Expand Down Expand Up @@ -521,13 +531,13 @@ def _execute_img_registration(self, item):
path_log = os.path.join(path_dir_reg, self.NAME_LOG_REGISTRATION)
# TODO, add lock to single thread, create pool with possible thread ids
# (USE taskset [native], numactl [need install])
if not (isinstance(commands, list) or isinstance(commands, tuple)):
if not isinstance(commands, (list, tuple)):
commands = [commands]
# measure execution time
cmd_result = exec_commands(commands, path_log, timeout=self.EXECUTE_TIMEOUT)
# if the experiment failed, return back None
if not cmd_result:
return None
item = None
return item

def _generate_regist_command(self, item):
Expand Down Expand Up @@ -627,7 +637,6 @@ def main(cls, params=None):
params = parse_arg_params(arg_parser)

logging.info('running...')
logging.info(cls.__doc__)
benchmark = cls(params)
benchmark.run()
path_expt = benchmark.params['path_exp']
Expand Down Expand Up @@ -660,17 +669,19 @@ def _load_landmarks(cls, item, path_dataset):

@classmethod
def compute_registration_statistic(cls, idx_row, df_experiments,
path_dataset=None, path_experiment=None):
path_dataset=None, path_experiment=None, path_reference=None):
""" after successful registration load initial nad estimated landmarks
afterwords compute various statistic for init, and final alignment
:param tuple(int,dict) df_row: row from iterated table
:param DF df_experiments: DataFrame with experiments
:param str|None path_dataset: path to the dataset folder
:param str|None path_dataset: path to the provided dataset folder
:param str|None path_reference: path to the complete landmark collection folder
:param str|None path_experiment: path to the experiment folder
"""
idx, row = idx_row
row = dict(row) # convert even series to dictionary
# load common landmarks and image size
points_ref, points_move, path_img_ref = cls._load_landmarks(row, path_dataset)
img_diag = cls._image_diag(row, path_img_ref)
df_experiments.loc[idx, cls.COL_IMAGE_DIAGONAL] = img_diag
Expand All @@ -679,31 +690,44 @@ def compute_registration_statistic(cls, idx_row, df_experiments,
cls.compute_registration_accuracy(df_experiments, idx, points_ref, points_move,
'init', img_diag, wo_affine=False)

# define what is the target and init state according to the experiment results
use_move_warp = isinstance(row.get(cls.COL_POINTS_MOVE_WARP, None), str)
if use_move_warp:
points_init, points_target = points_move, points_ref
col_source, col_target = cls.COL_POINTS_MOVE, cls.COL_POINTS_REF
col_lnds_warp = cls.COL_POINTS_MOVE_WARP
else:
points_init, points_target = points_ref, points_move
col_lnds_warp = cls.COL_POINTS_REF_WARP
col_source, col_target = cls.COL_POINTS_REF, cls.COL_POINTS_MOVE

# optional filtering
if path_reference:
ratio, points_target, _ = \
filter_paired_landmarks(row, path_dataset, path_reference, col_source, col_target)
df_experiments.loc[idx, COL_PAIRED_LANDMARKS] = np.round(ratio, 2)

# load transformed landmarks
if (cls.COL_POINTS_MOVE_WARP not in row) and (cls.COL_POINTS_REF_WARP not in row):
logging.error('Statistic: no output landmarks')
return

# define what is the target and init state according to the experiment results
is_move_warp = isinstance(row.get(cls.COL_POINTS_MOVE_WARP, None), str)
points_init = points_move if is_move_warp else points_ref
points_target = points_ref if is_move_warp else points_move
col_lnds_warp = cls.COL_POINTS_MOVE_WARP if is_move_warp else cls.COL_POINTS_REF_WARP

# check if there are reference landmarks
if points_target is None:
logging.warning('Missing landmarks in "%s"',
cls.COL_POINTS_REF if is_move_warp else cls.COL_POINTS_MOVE)
cls.COL_POINTS_REF if use_move_warp else cls.COL_POINTS_MOVE)
return
# load warped landmarks
path_lnds_wapr = update_path(row[col_lnds_warp], pre_path=path_experiment)
if path_lnds_wapr and os.path.isfile(path_lnds_wapr):
points_warp = load_landmarks(path_lnds_wapr)
path_lnds_warp = update_path(row[col_lnds_warp], pre_path=path_experiment)
if path_lnds_warp and os.path.isfile(path_lnds_warp):
points_warp = load_landmarks(path_lnds_warp)
points_warp = np.nan_to_num(points_warp)
else:
logging.warning('Invalid path to the landmarks: "%s" <- "%s"',
path_lnds_wapr, row[col_lnds_warp])
path_lnds_warp, row[col_lnds_warp])
return
df_experiments.loc[idx, cls.COL_NB_LANDMARKS_INPUT] = min(len(points_ref), len(points_ref))
df_experiments.loc[idx, cls.COL_NB_LANDMARKS_WARP] = len(points_warp)

# compute Affine statistic
affine_diff = compute_affine_transf_diff(points_init, points_target, points_warp)
Expand Down Expand Up @@ -732,8 +756,8 @@ def compute_registration_accuracy(cls, df_experiments, idx, points1, points2,
:param DF df_experiments: DataFrame with experiments
:param int idx: index of tha particular record
:param points1: np.array<nb_points, dim>
:param points2: np.array<nb_points, dim>
:param ndarray points1: np.array<nb_points, dim>
:param ndarray points2: np.array<nb_points, dim>
:param str state: whether it was before of after registration
:param float img_diag: target image diagonal
:param bool wo_affine: without affine transform, assume only local/elastic deformation
Expand Down Expand Up @@ -886,6 +910,63 @@ def visualise_registration(cls, idx_row, path_dataset=None, path_experiment=None
return path_fig


def _df_drop_unnamed(df):
"""Drop columns was index without name and was loaded as `Unnamed: 0.`"""
df = df[list(filter(lambda c: not c.startswith('Unnamed:'), df.columns))]
return df


def filter_paired_landmarks(item, path_dataset, path_reference, col_source, col_target):
""" filter all relevant landmarks which were used and copy them to experiment
The case is that in certain challenge stage users had provided just a subset
of all image landmarks which could be laos shuffled. The idea is to filter identify
all user used (provided in dataset) landmarks and filter them from temporary
reference dataset.
:param dict|Series item: experiment DataFrame
:param str path_dataset: path to provided landmarks
:param str path_reference: path to the complete landmark collection
:param str col_source: column name of landmarks to be transformed
:param str col_target: column name of landmarks to be compared
:return tuple(float,ndarray,ndarray): match ratio, filtered ref and move landmarks
>>> p_data = update_path('data_images')
>>> p_csv = os.path.join(p_data, 'pairs-imgs-lnds_histol.csv')
>>> df = pd.read_csv(p_csv)
>>> ratio, lnds_ref, lnds_move = filter_paired_landmarks(dict(df.iloc[0]), p_data, p_data,
... ImRegBenchmark.COL_POINTS_MOVE, ImRegBenchmark.COL_POINTS_REF)
>>> ratio
1.0
>>> lnds_ref.shape == lnds_move.shape
True
"""
path_ref = update_path(item[col_source], pre_path=path_reference)
assert os.path.isfile(path_ref), 'missing landmarks: %s' % path_ref
path_load = update_path(item[col_source], pre_path=path_dataset)
assert os.path.isfile(path_load), 'missing landmarks: %s' % path_load
pairs = common_landmarks(load_landmarks(path_ref), load_landmarks(path_load), threshold=1)
if not pairs.size:
logging.warning('there is not pairing between landmarks or dataset and user reference')
return 0., np.empty([0]), np.empty([0])

pairs = sorted(pairs.tolist(), key=lambda p: p[1])
ind_ref = np.asarray(pairs)[:, 0]
nb_common = min([len(load_landmarks(update_path(item[col], pre_path=path_reference)))
for col in (col_target, col_source)])
ind_ref = ind_ref[ind_ref < nb_common]

path_lnd_ref = update_path(item[col_target], pre_path=path_reference)
lnds_filter_ref = load_landmarks(path_lnd_ref)[ind_ref]
path_lnd_move = update_path(item[col_source], pre_path=path_reference)
lnds_filter_move = load_landmarks(path_lnd_move)[ind_ref]

ratio_matches = len(ind_ref) / float(nb_common)
assert ratio_matches <= 1, 'suspicious ratio for %i paired and %i common landmarks' \
% (len(pairs), nb_common)
return ratio_matches, lnds_filter_ref, lnds_filter_move


def export_summary_results(df_experiments, path_out, params=None,
name_txt=ImRegBenchmark.NAME_RESULTS_TXT,
name_csv=ImRegBenchmark.NAME_RESULTS_CSV):
Expand Down
2 changes: 2 additions & 0 deletions birl/bm_template.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import sys
import logging

# this is used while calling this file as a script
sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root
from birl.utilities.experiments import create_basic_parser
from birl.benchmark import ImRegBenchmark
Expand Down Expand Up @@ -174,6 +175,7 @@ def extend_parse(arg_parser):
# RUN by given parameters
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
logging.info(__doc__)
arg_params, path_expt = BmTemplate.main()

if arg_params.get('run_comp_benchmark', False):
Expand Down
6 changes: 3 additions & 3 deletions birl/utilities/data_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def load_landmarks(path_file):
if not os.path.isfile(path_file):
logging.warning('missing landmarks "%s"', path_file)
return None
ext = os.path.splitext(path_file)[-1]
_, ext = os.path.splitext(path_file)
if ext == '.csv':
return load_landmarks_csv(path_file)
elif ext == '.pts':
Expand Down Expand Up @@ -160,7 +160,7 @@ def save_landmarks(path_file, landmarks):
"""
assert os.path.isdir(os.path.dirname(path_file)), \
'missing folder "%s"' % os.path.dirname(path_file)
path_file = os.path.splitext(path_file)[0]
path_file, _ = os.path.splitext(path_file)
landmarks = landmarks.values if isinstance(landmarks, pd.DataFrame) else landmarks
save_landmarks_csv(path_file + '.csv', landmarks)
save_landmarks_pts(path_file + '.pts', landmarks)
Expand Down Expand Up @@ -433,7 +433,7 @@ def _gene_out_path(path_file, file_ext, path_out_dir=None):
"""
if not path_out_dir:
path_out_dir = os.path.dirname(path_file)
img_name = os.path.splitext(os.path.basename(path_file))[0]
img_name, _ = os.path.splitext(os.path.basename(path_file))
path_out = os.path.join(path_out_dir, img_name + file_ext)
return path_out

Expand Down
25 changes: 16 additions & 9 deletions birl/utilities/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -600,25 +600,31 @@ def list_sub_folders(path_folder, name='*'):
return sub_dirs


def common_landmarks(points1, points2, threshold=0.5):
def common_landmarks(points1, points2, threshold=1.5):
""" find common landmarks in two sets
:param ndarray|list(list(float)) points1: first point set
:param ndarray|list(list(float)) points2: second point set
:param float threshold: threshold for assignment
:param float threshold: threshold for assignment (for landmarks in pixels)
:return list(bool): flags
>>> np.random.seed(0)
>>> common = np.random.random((5, 2))
>>> pts1 = np.vstack([common, np.random.random((10, 2))])
>>> pts2 = np.vstack([common, np.random.random((15, 2))])
>>> common_landmarks(pts1, pts2, threshold=0.1)
array([[ 0, 0],
[ 1, 1],
[ 2, 2],
[ 3, 3],
[ 4, 4],
[14, 15]])
>>> common_landmarks(pts1, pts2, threshold=1e-3)
array([[0, 0],
[1, 1],
[2, 2],
[3, 3],
[4, 4]])
>>> np.random.shuffle(pts2)
>>> common_landmarks(pts1, pts2, threshold=1e-3)
array([[ 0, 13],
[ 1, 10],
[ 2, 9],
[ 3, 14],
[ 4, 8]])
"""
points1 = np.asarray(points1)
points2 = np.asarray(points2)
Expand All @@ -627,6 +633,7 @@ def common_landmarks(points1, points2, threshold=0.5):
dist_sel = dist[ind_row, ind_col]
pairs = [(i, j) for (i, j, d) in zip(ind_row, ind_col, dist_sel)
if d < threshold]
assert len(pairs) <= min([len(points1), len(points2)])
return np.array(pairs, dtype=int)


Expand Down
Loading

0 comments on commit ec2ca0d

Please sign in to comment.