Skip to content

Commit

Permalink
add paper: Data filtering for efficient adversarial training
Browse files Browse the repository at this point in the history
  • Loading branch information
ecchen committed Mar 8, 2024
1 parent 8117cba commit 7ac6d97
Show file tree
Hide file tree
Showing 15 changed files with 694 additions and 0 deletions.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
5 changes: 5 additions & 0 deletions LessIsMore/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Data filtering for efficient adversarial training

The code for the paper [Data filtering for efficient adversarial training](https://doi.org/10.1016/j.patcog.2024.110394).

The details will be released soon.
76 changes: 76 additions & 0 deletions LessIsMore/cifar10-WRN-34-10/auto_attack.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
2022-08-05 13:14:14.844 [INFO] eval_pytorch:<module>:59 | [ GPU ] CUDA_VISIBLE_DEVICES: 3
2022-08-05 13:14:14.844 [INFO] eval_pytorch:<module>:60 | [torch] Pytorch version: 1.12.0+cu113
2022-08-05 13:14:14.845 [INFO] eval_pytorch:<module>:61 | [param] Listing hyper-parameters...
2022-08-05 13:14:14.845 [INFO] eval_pytorch:<module>:62 | [param] store_path : ../AWP/trades_AWP/model-best/
2022-08-05 13:14:14.845 [INFO] eval_pytorch:<module>:63 | [param] ckpt_name : ./model-best.pt
2022-08-05 13:14:14.845 [INFO] eval_pytorch:<module>:64 | [param] norm : Linf
2022-08-05 13:14:14.845 [INFO] eval_pytorch:<module>:65 | [param] epsilon : 0.031373
2022-08-05 13:14:14.846 [INFO] eval_pytorch:<module>:75 | [param] dataset : CIFAR10
2022-08-05 13:14:14.846 [INFO] eval_pytorch:<module>:76 | [param] model_depth: 34
2022-08-05 13:14:14.846 [INFO] eval_pytorch:<module>:77 | [param] model_widen: 10
2022-08-05 13:14:18.908 [WARNING] eval_pytorch:<module>:112 | using the original data
2022-08-05 13:14:22.522 [INFO] eval_pytorch:<module>:135 | MD5 checksum: 274deb91b91e16a86466a5fc86a27b10
2022-08-05 13:14:22.733 [INFO] eval_pytorch:<module>:136 | SHA1 checksum: 9bb5639c033de0ecd58c567d533b584eb722060b
2022-08-05 13:14:36.035 [INFO] other_utils:log:13 | initial accuracy: 86.54%
2022-08-05 13:15:58.752 [INFO] other_utils:log:13 | apgd-ce - 1/18 - 149 out of 500 successfully perturbed
2022-08-05 13:17:15.184 [INFO] other_utils:log:13 | apgd-ce - 2/18 - 132 out of 500 successfully perturbed
2022-08-05 13:18:31.619 [INFO] other_utils:log:13 | apgd-ce - 3/18 - 136 out of 500 successfully perturbed
2022-08-05 13:19:48.043 [INFO] other_utils:log:13 | apgd-ce - 4/18 - 147 out of 500 successfully perturbed
2022-08-05 13:21:04.464 [INFO] other_utils:log:13 | apgd-ce - 5/18 - 160 out of 500 successfully perturbed
2022-08-05 13:22:20.876 [INFO] other_utils:log:13 | apgd-ce - 6/18 - 146 out of 500 successfully perturbed
2022-08-05 13:23:37.293 [INFO] other_utils:log:13 | apgd-ce - 7/18 - 149 out of 500 successfully perturbed
2022-08-05 13:24:53.688 [INFO] other_utils:log:13 | apgd-ce - 8/18 - 136 out of 500 successfully perturbed
2022-08-05 13:26:10.135 [INFO] other_utils:log:13 | apgd-ce - 9/18 - 150 out of 500 successfully perturbed
2022-08-05 13:27:26.555 [INFO] other_utils:log:13 | apgd-ce - 10/18 - 153 out of 500 successfully perturbed
2022-08-05 13:28:42.976 [INFO] other_utils:log:13 | apgd-ce - 11/18 - 144 out of 500 successfully perturbed
2022-08-05 13:29:59.389 [INFO] other_utils:log:13 | apgd-ce - 12/18 - 140 out of 500 successfully perturbed
2022-08-05 13:31:15.791 [INFO] other_utils:log:13 | apgd-ce - 13/18 - 159 out of 500 successfully perturbed
2022-08-05 13:32:32.217 [INFO] other_utils:log:13 | apgd-ce - 14/18 - 130 out of 500 successfully perturbed
2022-08-05 13:33:48.631 [INFO] other_utils:log:13 | apgd-ce - 15/18 - 165 out of 500 successfully perturbed
2022-08-05 13:35:05.045 [INFO] other_utils:log:13 | apgd-ce - 16/18 - 144 out of 500 successfully perturbed
2022-08-05 13:36:21.463 [INFO] other_utils:log:13 | apgd-ce - 17/18 - 149 out of 500 successfully perturbed
2022-08-05 13:36:48.202 [INFO] other_utils:log:13 | apgd-ce - 18/18 - 41 out of 154 successfully perturbed
2022-08-05 13:36:48.202 [INFO] other_utils:log:13 | robust accuracy after APGD-CE: 61.24% (total time 1332.2 s)
2022-08-05 13:47:30.659 [INFO] other_utils:log:13 | apgd-t - 1/13 - 39 out of 500 successfully perturbed
2022-08-05 13:58:19.215 [INFO] other_utils:log:13 | apgd-t - 2/13 - 25 out of 500 successfully perturbed
2022-08-05 14:09:05.150 [INFO] other_utils:log:13 | apgd-t - 3/13 - 29 out of 500 successfully perturbed
2022-08-05 14:19:53.440 [INFO] other_utils:log:13 | apgd-t - 4/13 - 25 out of 500 successfully perturbed
2022-08-05 14:30:37.473 [INFO] other_utils:log:13 | apgd-t - 5/13 - 34 out of 500 successfully perturbed
2022-08-05 14:41:15.466 [INFO] other_utils:log:13 | apgd-t - 6/13 - 36 out of 500 successfully perturbed
2022-08-05 14:51:59.074 [INFO] other_utils:log:13 | apgd-t - 7/13 - 29 out of 500 successfully perturbed
2022-08-05 15:02:33.482 [INFO] other_utils:log:13 | apgd-t - 8/13 - 41 out of 500 successfully perturbed
2022-08-05 15:13:15.251 [INFO] other_utils:log:13 | apgd-t - 9/13 - 31 out of 500 successfully perturbed
2022-08-05 15:23:52.353 [INFO] other_utils:log:13 | apgd-t - 10/13 - 34 out of 500 successfully perturbed
2022-08-05 15:34:25.614 [INFO] other_utils:log:13 | apgd-t - 11/13 - 36 out of 500 successfully perturbed
2022-08-05 15:45:09.937 [INFO] other_utils:log:13 | apgd-t - 12/13 - 27 out of 500 successfully perturbed
2022-08-05 15:47:59.642 [INFO] other_utils:log:13 | apgd-t - 13/13 - 8 out of 124 successfully perturbed
2022-08-05 15:47:59.643 [INFO] other_utils:log:13 | robust accuracy after APGD-T: 57.30% (total time 9203.6 s)
2022-08-05 16:03:08.041 [INFO] other_utils:log:13 | fab-t - 1/12 - 0 out of 500 successfully perturbed
2022-08-05 16:18:16.559 [INFO] other_utils:log:13 | fab-t - 2/12 - 0 out of 500 successfully perturbed
2022-08-05 16:33:25.204 [INFO] other_utils:log:13 | fab-t - 3/12 - 0 out of 500 successfully perturbed
2022-08-05 16:48:34.252 [INFO] other_utils:log:13 | fab-t - 4/12 - 0 out of 500 successfully perturbed
2022-08-05 17:03:43.067 [INFO] other_utils:log:13 | fab-t - 5/12 - 0 out of 500 successfully perturbed
2022-08-05 17:18:52.190 [INFO] other_utils:log:13 | fab-t - 6/12 - 0 out of 500 successfully perturbed
2022-08-05 17:34:01.195 [INFO] other_utils:log:13 | fab-t - 7/12 - 0 out of 500 successfully perturbed
2022-08-05 17:49:09.736 [INFO] other_utils:log:13 | fab-t - 8/12 - 0 out of 500 successfully perturbed
2022-08-05 18:04:18.557 [INFO] other_utils:log:13 | fab-t - 9/12 - 0 out of 500 successfully perturbed
2022-08-05 18:19:27.193 [INFO] other_utils:log:13 | fab-t - 10/12 - 0 out of 500 successfully perturbed
2022-08-05 18:34:35.867 [INFO] other_utils:log:13 | fab-t - 11/12 - 0 out of 500 successfully perturbed
2022-08-05 18:41:38.436 [INFO] other_utils:log:13 | fab-t - 12/12 - 0 out of 230 successfully perturbed
2022-08-05 18:41:38.436 [INFO] other_utils:log:13 | robust accuracy after FAB-T: 57.30% (total time 19622.4 s)
2022-08-05 19:01:45.922 [INFO] other_utils:log:13 | square - 1/12 - 0 out of 500 successfully perturbed
2022-08-05 19:21:53.203 [INFO] other_utils:log:13 | square - 2/12 - 0 out of 500 successfully perturbed
2022-08-05 19:41:59.006 [INFO] other_utils:log:13 | square - 3/12 - 0 out of 500 successfully perturbed
2022-08-05 20:02:03.977 [INFO] other_utils:log:13 | square - 4/12 - 0 out of 500 successfully perturbed
2022-08-05 20:22:10.998 [INFO] other_utils:log:13 | square - 5/12 - 0 out of 500 successfully perturbed
2022-08-05 20:42:18.367 [INFO] other_utils:log:13 | square - 6/12 - 0 out of 500 successfully perturbed
2022-08-05 21:02:26.304 [INFO] other_utils:log:13 | square - 7/12 - 0 out of 500 successfully perturbed
2022-08-05 21:22:34.902 [INFO] other_utils:log:13 | square - 8/12 - 0 out of 500 successfully perturbed
2022-08-05 21:42:43.920 [INFO] other_utils:log:13 | square - 9/12 - 0 out of 500 successfully perturbed
2022-08-05 22:02:53.565 [INFO] other_utils:log:13 | square - 10/12 - 0 out of 500 successfully perturbed
2022-08-05 22:23:06.879 [INFO] other_utils:log:13 | square - 11/12 - 0 out of 500 successfully perturbed
2022-08-05 22:32:27.113 [INFO] other_utils:log:13 | square - 12/12 - 0 out of 230 successfully perturbed
2022-08-05 22:32:27.114 [INFO] other_utils:log:13 | robust accuracy after SQUARE: 57.30% (total time 33471.1 s)
2022-08-05 22:32:27.116 [INFO] other_utils:log:13 | max Linf perturbation: 0.03137, nan in tensor: 0, max: 1.00000, min: 0.00000
2022-08-05 22:32:27.116 [INFO] other_utils:log:13 | robust accuracy: 57.30%

90 changes: 90 additions & 0 deletions LessIsMore/cifar10-WRN-34-10/wideresnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False) or None

def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)


class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)

def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)

def forward(self, x):
return self.layer(x)


class WideResNet(nn.Module):
def __init__(self, depth=34, num_classes=10, widen_factor=10, dropRate=0.0):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert ((depth - 4) % 6 == 0)
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
# 3rd block
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()

def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return self.fc(out)
73 changes: 73 additions & 0 deletions LessIsMore/cifar10-WRN-34-20/auto_attack.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
2022-02-11 05:32:33.098 [INFO] eval_pytorch:<module>:61 | [ GPU ] CUDA_VISIBLE_DEVICES: 2
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:62 | [torch] Pytorch version: 1.10.1+cu113
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:63 | [param] Listing hyper-parameters...
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:64 | [param] dataset : CIFAR10
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:65 | [param] store_path : ../AWP/trades_AWP/model-best/
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:66 | [param] ckpt_name : ./model-best.pt
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:67 | [param] norm : Linf
2022-02-11 05:32:33.099 [INFO] eval_pytorch:<module>:68 | [param] epsilon : 0.031373
2022-02-11 05:32:37.689 [WARNING] eval_pytorch:<module>:113 | using the original data
2022-02-11 05:33:00.337 [INFO] eval_pytorch:<module>:136 | MD5 checksum: 287f8e885bd44f748d21f7ad77eb7d11
2022-02-11 05:33:01.317 [INFO] eval_pytorch:<module>:137 | SHA1 checksum: 65cdd1d98e5132d683c29345ac2c5f3a8f33ae1a
2022-02-11 05:33:21.838 [INFO] other_utils:log:13 | initial accuracy: 86.10%
2022-02-11 05:37:31.347 [INFO] other_utils:log:13 | apgd-ce - 1/18 - 150 out of 500 successfully perturbed
2022-02-11 05:41:35.934 [INFO] other_utils:log:13 | apgd-ce - 2/18 - 136 out of 500 successfully perturbed
2022-02-11 05:45:40.689 [INFO] other_utils:log:13 | apgd-ce - 3/18 - 139 out of 500 successfully perturbed
2022-02-11 05:49:45.250 [INFO] other_utils:log:13 | apgd-ce - 4/18 - 149 out of 500 successfully perturbed
2022-02-11 05:53:49.968 [INFO] other_utils:log:13 | apgd-ce - 5/18 - 148 out of 500 successfully perturbed
2022-02-11 05:57:54.800 [INFO] other_utils:log:13 | apgd-ce - 6/18 - 136 out of 500 successfully perturbed
2022-02-11 06:01:59.610 [INFO] other_utils:log:13 | apgd-ce - 7/18 - 136 out of 500 successfully perturbed
2022-02-11 06:06:04.420 [INFO] other_utils:log:13 | apgd-ce - 8/18 - 130 out of 500 successfully perturbed
2022-02-11 06:10:09.260 [INFO] other_utils:log:13 | apgd-ce - 9/18 - 140 out of 500 successfully perturbed
2022-02-11 06:14:13.939 [INFO] other_utils:log:13 | apgd-ce - 10/18 - 150 out of 500 successfully perturbed
2022-02-11 06:18:18.689 [INFO] other_utils:log:13 | apgd-ce - 11/18 - 153 out of 500 successfully perturbed
2022-02-11 06:22:23.327 [INFO] other_utils:log:13 | apgd-ce - 12/18 - 140 out of 500 successfully perturbed
2022-02-11 06:26:27.981 [INFO] other_utils:log:13 | apgd-ce - 13/18 - 161 out of 500 successfully perturbed
2022-02-11 06:30:32.668 [INFO] other_utils:log:13 | apgd-ce - 14/18 - 135 out of 500 successfully perturbed
2022-02-11 06:34:37.528 [INFO] other_utils:log:13 | apgd-ce - 15/18 - 158 out of 500 successfully perturbed
2022-02-11 06:38:42.350 [INFO] other_utils:log:13 | apgd-ce - 16/18 - 132 out of 500 successfully perturbed
2022-02-11 06:42:47.087 [INFO] other_utils:log:13 | apgd-ce - 17/18 - 154 out of 500 successfully perturbed
2022-02-11 06:43:43.047 [INFO] other_utils:log:13 | apgd-ce - 18/18 - 25 out of 110 successfully perturbed
2022-02-11 06:43:43.047 [INFO] other_utils:log:13 | robust accuracy after APGD-CE: 61.38% (total time 4221.2 s)
2022-02-11 07:18:15.151 [INFO] other_utils:log:13 | apgd-t - 1/13 - 34 out of 500 successfully perturbed
2022-02-11 07:53:24.270 [INFO] other_utils:log:13 | apgd-t - 2/13 - 15 out of 500 successfully perturbed
2022-02-11 08:27:58.437 [INFO] other_utils:log:13 | apgd-t - 3/13 - 29 out of 500 successfully perturbed
2022-02-11 09:02:30.998 [INFO] other_utils:log:13 | apgd-t - 4/13 - 26 out of 500 successfully perturbed
2022-02-11 09:36:43.824 [INFO] other_utils:log:13 | apgd-t - 5/13 - 31 out of 500 successfully perturbed
2022-02-11 10:11:16.419 [INFO] other_utils:log:13 | apgd-t - 6/13 - 28 out of 500 successfully perturbed
2022-02-11 10:45:30.324 [INFO] other_utils:log:13 | apgd-t - 7/13 - 26 out of 500 successfully perturbed
2022-02-11 11:19:49.398 [INFO] other_utils:log:13 | apgd-t - 8/13 - 30 out of 500 successfully perturbed
2022-02-11 11:54:18.904 [INFO] other_utils:log:13 | apgd-t - 9/13 - 24 out of 500 successfully perturbed
2022-02-11 12:28:28.030 [INFO] other_utils:log:13 | apgd-t - 10/13 - 29 out of 500 successfully perturbed
2022-02-11 13:02:40.310 [INFO] other_utils:log:13 | apgd-t - 11/13 - 27 out of 500 successfully perturbed
2022-02-11 13:36:53.112 [INFO] other_utils:log:13 | apgd-t - 12/13 - 25 out of 500 successfully perturbed
2022-02-11 13:47:00.036 [INFO] other_utils:log:13 | apgd-t - 13/13 - 5 out of 138 successfully perturbed
2022-02-11 13:47:00.037 [INFO] other_utils:log:13 | robust accuracy after APGD-T: 58.09% (total time 29618.2 s)
2022-02-11 14:35:54.853 [INFO] other_utils:log:13 | fab-t - 1/12 - 0 out of 500 successfully perturbed
2022-02-11 15:24:49.647 [INFO] other_utils:log:13 | fab-t - 2/12 - 0 out of 500 successfully perturbed
2022-02-11 16:13:44.217 [INFO] other_utils:log:13 | fab-t - 3/12 - 0 out of 500 successfully perturbed
2022-02-11 17:02:38.775 [INFO] other_utils:log:13 | fab-t - 4/12 - 0 out of 500 successfully perturbed
2022-02-11 17:51:34.339 [INFO] other_utils:log:13 | fab-t - 5/12 - 0 out of 500 successfully perturbed
2022-02-11 18:40:31.251 [INFO] other_utils:log:13 | fab-t - 6/12 - 0 out of 500 successfully perturbed
2022-02-11 19:29:28.811 [INFO] other_utils:log:13 | fab-t - 7/12 - 0 out of 500 successfully perturbed
2022-02-11 20:18:26.582 [INFO] other_utils:log:13 | fab-t - 8/12 - 0 out of 500 successfully perturbed
2022-02-11 21:07:27.107 [INFO] other_utils:log:13 | fab-t - 9/12 - 0 out of 500 successfully perturbed
2022-02-11 21:56:27.485 [INFO] other_utils:log:13 | fab-t - 10/12 - 0 out of 500 successfully perturbed
2022-02-11 22:45:28.873 [INFO] other_utils:log:13 | fab-t - 11/12 - 0 out of 500 successfully perturbed
2022-02-11 23:15:39.622 [INFO] other_utils:log:13 | fab-t - 12/12 - 0 out of 309 successfully perturbed
2022-02-11 23:15:39.624 [INFO] other_utils:log:13 | robust accuracy after FAB-T: 58.09% (total time 63737.8 s)
2022-02-12 00:24:18.455 [INFO] other_utils:log:13 | square - 1/12 - 0 out of 500 successfully perturbed
2022-02-12 01:32:58.302 [INFO] other_utils:log:13 | square - 2/12 - 0 out of 500 successfully perturbed
2022-02-12 02:41:37.447 [INFO] other_utils:log:13 | square - 3/12 - 0 out of 500 successfully perturbed
2022-02-12 03:50:16.588 [INFO] other_utils:log:13 | square - 4/12 - 0 out of 500 successfully perturbed
2022-02-12 04:58:54.419 [INFO] other_utils:log:13 | square - 5/12 - 0 out of 500 successfully perturbed
2022-02-12 06:07:33.118 [INFO] other_utils:log:13 | square - 6/12 - 0 out of 500 successfully perturbed
2022-02-12 07:16:11.055 [INFO] other_utils:log:13 | square - 7/12 - 0 out of 500 successfully perturbed
2022-02-12 08:24:53.178 [INFO] other_utils:log:13 | square - 8/12 - 0 out of 500 successfully perturbed
2022-02-12 09:33:26.522 [INFO] other_utils:log:13 | square - 9/12 - 0 out of 500 successfully perturbed
2022-02-12 10:42:00.672 [INFO] other_utils:log:13 | square - 10/12 - 0 out of 500 successfully perturbed
2022-02-12 11:50:32.460 [INFO] other_utils:log:13 | square - 11/12 - 0 out of 500 successfully perturbed
2022-02-12 12:32:41.405 [INFO] other_utils:log:13 | square - 12/12 - 0 out of 309 successfully perturbed
2022-02-12 12:32:41.406 [INFO] other_utils:log:13 | robust accuracy after SQUARE: 58.09% (total time 111559.6 s)
2022-02-12 12:32:41.438 [INFO] other_utils:log:13 | max Linf perturbation: 0.03137, nan in tensor: 0, max: 1.00000, min: 0.00000
2022-02-12 12:32:41.438 [INFO] other_utils:log:13 | robust accuracy: 58.09%
Loading

0 comments on commit 7ac6d97

Please sign in to comment.