-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfit-fromqc.py
180 lines (154 loc) · 6.54 KB
/
fit-fromqc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python2
from __future__ import print_function
import sys
sys.path.append('../lib/')
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pints
import model_ikr as m
import parametertransform
from priors import BeattieLogPrior as LogPrior
from priors import prior_parameters
from protocols import leak_staircase as protocol_def
savedir = './out'
if not os.path.isdir(savedir):
os.makedirs(savedir)
data_dir = '../data-sweep2'
qc_dir = '../qc'
file_list = ['herg25oc1']
temperatures = [25.0]
useFilterCap = False
# Control fitting seed --> OR DONT
# fit_seed = np.random.randint(0, 2**30)
fit_seed = 542811797
print('Using seed: ', fit_seed)
np.random.seed(fit_seed)
# Set parameter transformation
transform_to_model_param = parametertransform.log_transform_to_model_param
transform_from_model_param = parametertransform.log_transform_from_model_param
for i_file, (file_name, temperature) in enumerate(zip(file_list,
temperatures)):
# Load QC
selectedfile = '%s/selected-%s.txt' % (qc_dir, file_name)
selectedwell = []
with open(selectedfile, 'r') as f:
for l in f:
if not l.startswith('#'):
selectedwell.append(l.split()[0])
# Split each file_name as a separate output dir
savefolder = file_name + '-sweep2'
if not os.path.isdir('%s/%s' % (savedir, savefolder)):
os.makedirs('%s/%s' % (savedir, savefolder))
for i_cell, cell in enumerate(selectedwell):
# Load data file names
data_file_name = file_name + '-staircaseramp-' + cell + '.csv'
time_file_name = file_name + '-staircaseramp-times.csv'
# Save name
saveas = data_file_name[:-4]
if useFilterCap:
saveas += '-fcap'
# Load data
data = np.loadtxt(data_dir + '/' + data_file_name,
delimiter=',', skiprows=1) # headers
times = np.loadtxt(data_dir + '/' + time_file_name,
delimiter=',', skiprows=1) # headers
noise_sigma = np.std(data[:500])
print('Estimated noise level: ', noise_sigma)
# Try prior param
priorparams = np.asarray(prior_parameters['23.0'])
transform_priorparams = transform_from_model_param(priorparams)
# Load model
model = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=273.15 + temperature, # K
transform=transform_to_model_param,
useFilterCap=useFilterCap) # ignore capacitive spike
if useFilterCap:
# Apply capacitance filter to data
data = data * model.cap_filter(times)
# Create Pints stuffs
problem = pints.SingleOutputProblem(model, times, data)
loglikelihood = pints.KnownNoiseLogLikelihood(problem, noise_sigma)
logprior = LogPrior(transform_to_model_param,
transform_from_model_param)
logposterior = pints.LogPosterior(loglikelihood, logprior)
print('Score at default parameters: ',
logposterior(transform_priorparams))
for _ in range(10):
assert(logposterior(transform_priorparams) ==\
logposterior(transform_priorparams))
try:
N = int(sys.argv[1])
except IndexError:
N = 3
params, logposteriors = [], []
for i in range(N):
if i == 0:
x0 = transform_priorparams
else:
# Randomly pick a starting point
x0 = logprior.sample()
print('Starting point: ', x0)
# Create optimiser
print('Starting logposterior: ', logposterior(x0))
opt = pints.Optimisation(logposterior, x0.T, method=pints.CMAES)
opt.set_max_iterations(None)
opt.set_parallel(20)
# Run optimisation
try:
with np.errstate(all='ignore'):
# Tell numpy not to issue warnings
p, s = opt.run()
p = transform_to_model_param(p)
params.append(p)
logposteriors.append(s)
print('Found solution: Old parameters:' )
for k, x in enumerate(p):
print(pints.strfloat(x) + ' ' + \
pints.strfloat(priorparams[k]))
except ValueError:
import traceback
traceback.print_exc()
# Order from best to worst
order = np.argsort(logposteriors)[::-1] # (use [::-1] for LL)
logposteriors = np.asarray(logposteriors)[order]
params = np.asarray(params)[order]
# Show results
bestn = min(3, N)
print('Best %d logposteriors:' % bestn)
for i in xrange(bestn):
print(logposteriors[i])
print('Mean & std of logposterior:')
print(np.mean(logposteriors))
print(np.std(logposteriors))
print('Worst logposterior:')
print(logposteriors[-1])
# Extract best 3
obtained_logposterior0 = logposteriors[0]
obtained_parameters = params[0]
# Show results
print('Found solution: Old parameters:' )
# Store output
with open('%s/%s/%s-solution-%s.txt' % (savedir, savefolder, saveas,\
fit_seed), 'w') as f:
for k, x in enumerate(obtained_parameters):
print(pints.strfloat(x) + ' ' + \
pints.strfloat(priorparams[k]))
f.write(pints.strfloat(x) + '\n')
fig, axes = plt.subplots(2, 1, sharex=True, figsize=(8, 6))
sol = problem.evaluate(transform_from_model_param(obtained_parameters))
vol = model.voltage(times) * 1e3
axes[0].plot(times, vol, c='#7f7f7f')
axes[0].set_ylabel('Voltage [mV]')
axes[1].plot(times, data, alpha=0.5, label='data')
axes[1].plot(times, sol, label='found solution')
axes[1].legend()
axes[1].set_ylabel('Current [pA]')
axes[1].set_xlabel('Time [s]')
plt.subplots_adjust(hspace=0)
plt.savefig('%s/%s/%s-solution-%s.png' % (savedir, savefolder, saveas,\
fit_seed), bbox_inches='tight')
plt.close()