-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpaper-fitting-and-validation-selected-cells-zoom.py
591 lines (535 loc) · 23.2 KB
/
paper-fitting-and-validation-selected-cells-zoom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#!/usr/bin/env python2
from __future__ import print_function
import sys
sys.path.append('../lib')
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch
import string
import protocols
import model_ikr as m
from releakcorrect import I_releak, score_leak, protocol_leak_check
from scipy.optimize import fmin
# Set seed
np.random.seed(101)
savedir = './figs/paper'
if not os.path.isdir(savedir):
os.makedirs(savedir)
savedirlr = './figs/paper-low-res'
if not os.path.isdir(savedirlr):
os.makedirs(savedirlr)
cell_ranking_file = './paper-rank-cells.txt'
#
# Protocol info
#
protocol_funcs = {
'staircaseramp': protocols.leak_staircase,
'pharma': protocols.pharma, # during drug application
'apab': 'protocol-apab.csv',
'apabv3': 'protocol-apabv3.csv',
'ap05hz': 'protocol-ap05hz.csv',
'ap1hz': 'protocol-ap1hz.csv',
'ap2hz': 'protocol-ap2hz.csv',
'sactiv': protocols.sactiv,
'sinactiv': protocols.sinactiv,
}
protocol_dir = '../protocol-time-series'
protocol_list = [
'staircaseramp',
'sactiv',
'sinactiv',
'pharma',
'apab',
'apabv3',
'ap05hz',
'ap1hz',
'ap2hz',
]
# IV protocol special treatment
protocol_iv = [
'sactiv',
'sinactiv',
]
protocol_iv_times = {
'sactiv': protocols.sactiv_times,
'sinactiv': protocols.sinactiv_times,
}
protocol_iv_convert = {
'sactiv': protocols.sactiv_convert,
'sinactiv': protocols.sinactiv_convert,
}
protocol_iv_args = {
'sactiv': protocols.sactiv_iv_arg,
'sinactiv': protocols.sinactiv_iv_arg,
}
protocol_iv_v = {
'sactiv': protocols.sactiv_v,
'sinactiv': protocols.sinactiv_v,
}
data_dir_staircase = '../data'
data_dir = '../data-autoLC'
file_dir = './out'
file_list = [
'herg25oc1',
]
temperatures = np.array([25.0])
temperatures += 273.15 # in K
fit_seed = '542811797'
isNorm = True
norm_method = 1
isSmooth = True
smooth_win = 51 # seems okay
smooth_order = 3
smooth_win_small = 3
smooth_order_small = 1
#
# Where to zoom in
#
norm_zoom = False
zoom_in_win = { # protocol: [(time_start, time_end), ...] in second
# 'staircaseramp': [(1.8, 2.5), (11.395, 11.415), (13.895, 13.915),
# (14.375, 14.925)],
'staircaseramp': [(1.875, 2.125), (11.35, 11.45), (13.85, 13.95),
(14.375, 14.625)],
'pharma': [(0.64, 0.66), (1.14, 1.16)],
'apab': [(0.0475, 0.0575), (0.32, 0.33)],
'apabv3': [(0.05, 0.07)],
'ap05hz': [(0.04, 0.07), (2.04, 2.07)],
'ap1hz': [(0.04, 0.07), (1.04, 1.07),
(2.04, 2.07), (3.04, 3.07)],
'ap2hz': [(0.045, 0.06), (0.545, 0.56),
(1.045, 1.06), (1.545, 1.56),
(2.045, 2.06), (2.545, 2.56),
(3.045, 3.06)],
'sactiv': None,
'sinactiv': None,
}
#
# Do a very very tailored version........ :(
#
fig = plt.figure(figsize=(16, 15))
grid = plt.GridSpec(70, 3, hspace=0.0, wspace=0.2)
n_maxzoom = 7
bigxgap = 12
n_xgrid = n_maxzoom * 6 * 2
bigygap = 4
n_ygrid = 22
grid = plt.GridSpec(3 * n_ygrid + 2 * bigygap, 3 * n_xgrid + 2 * bigxgap,
hspace=0.0, wspace=0.0)
axes = np.empty([12, int(len(protocol_list) / 3)], dtype=object)
# long list here:
for i in range(int(len(protocol_list) / 3)):
i_grid = i * (n_xgrid + bigxgap)
f_grid = (i + 1) * n_xgrid + i * bigxgap
# First 'row'
if i == 0:
axes[0, i] = fig.add_subplot(grid[0:6, i_grid:f_grid])
axes[0, i].set_xticklabels([])
axes[1, i] = fig.add_subplot(grid[6:12, i_grid:f_grid])
axes[2, i] = np.empty(n_maxzoom, dtype=object)
axes[3, i] = np.empty(n_maxzoom, dtype=object)
else:
axes[0, i] = fig.add_subplot(grid[0:10, i_grid:f_grid])
axes[0, i].set_xticklabels([])
axes[1, i] = fig.add_subplot(grid[10:20, i_grid:f_grid])
# Second 'row'
n_shift = n_ygrid + bigygap
axes[4, i] = fig.add_subplot(grid[n_shift+0:n_shift+6, i_grid:f_grid])
axes[4, i].set_xticklabels([])
axes[5, i] = fig.add_subplot(grid[n_shift+6:n_shift+12, i_grid:f_grid])
axes[6, i] = np.empty(n_maxzoom, dtype=object)
axes[7, i] = np.empty(n_maxzoom, dtype=object)
# Third 'row'
n_shift = 2 * (n_ygrid + bigygap)
axes[8, i] = fig.add_subplot(grid[n_shift+0:n_shift+6, i_grid:f_grid])
axes[8, i].set_xticklabels([])
axes[9, i] = fig.add_subplot(grid[n_shift+6:n_shift+12, i_grid:f_grid])
axes[10, i] = np.empty(n_maxzoom, dtype=object)
axes[11, i] = np.empty(n_maxzoom, dtype=object)
r_ngrid = {
2: (14, 18),
3: (18, 22),
6: (n_ygrid + bigygap + 14, n_ygrid + bigygap + 18),
7: (n_ygrid + bigygap + 18, n_ygrid + bigygap + 22),
10: (2 * (n_ygrid + bigygap) + 14, 2 * (n_ygrid + bigygap) + 18),
11: (2 * (n_ygrid + bigygap) + 18, 2 * (n_ygrid + bigygap) + 22),
}
# Do zoom in
# staircase-ramp specifal case
ai = 2
n_zoom = 6
assert(n_xgrid % n_zoom == 0)
cf = int(n_xgrid / n_zoom)
for ai in [2, 3]:
axes[ai, 0][0] = fig.add_subplot(grid[r_ngrid[ai][0]:r_ngrid[ai][1],
0:2*cf])
axes[ai, 0][1] = fig.add_subplot(grid[r_ngrid[ai][0]:r_ngrid[ai][1],
2*cf:3*cf])
axes[ai, 0][2] = fig.add_subplot(grid[r_ngrid[ai][0]:r_ngrid[ai][1],
3*cf:4*cf])
axes[ai, 0][3] = fig.add_subplot(grid[r_ngrid[ai][0]:r_ngrid[ai][1],
4*cf:6*cf])
for i in range(len(zoom_in_win['staircaseramp'])):
axes[ai, 0][i].set_xticklabels([])
axes[ai, 0][i].set_xticks([])
if i > 0:
axes[ai, 0][i].set_yticklabels([])
axes[ai, 0][i].set_yticks([])
# the rest
for i_prt, prt in enumerate(protocol_list):
for ii in [2, 3]:
ai, aj = 4 * int(i_prt / 3) + ii, i_prt % 3
if prt == 'staircaseramp' or (prt in protocol_iv):
continue
n_zoom = len(zoom_in_win[prt])
assert(n_xgrid % n_zoom == 0)
n = int(n_xgrid / n_zoom)
n_shift = aj * (n_xgrid + bigxgap)
for i in range(n_zoom):
axes[ai, aj][i] = fig.add_subplot(
grid[r_ngrid[ai][0]:r_ngrid[ai][1],
n_shift + i * n:n_shift + (i + 1) * n])
axes[ai, aj][i].set_xticklabels([])
axes[ai, aj][i].set_xticks([])
if i > 0:
axes[ai, aj][i].set_yticklabels([])
axes[ai, aj][i].set_yticks([])
# Set labels
axes[0, 0].set_ylabel('Model', fontsize=14)
axes[1, 0].set_ylabel('Data', fontsize=14)
axes[2, 0][0].set_ylabel('Zoom\nmodel', fontsize=14)
axes[3, 0][0].set_ylabel('Zoom\ndata', fontsize=14)
axes[4, 0].set_ylabel('Model', fontsize=14)
axes[5, 0].set_ylabel('Data', fontsize=14)
axes[6, 0][0].set_ylabel('Zoom\nmodel', fontsize=14)
axes[7, 0][0].set_ylabel('Zoom\ndata', fontsize=14)
axes[8, 0].set_ylabel('Model', fontsize=14)
axes[9, 0].set_ylabel('Data', fontsize=14)
axes[10, 0][0].set_ylabel('Zoom\nmodel', fontsize=14)
axes[11, 0][0].set_ylabel('Zoom\ndata', fontsize=14)
axes[3, 0][1].text(1, -0.5,
'Time [s]', fontsize=14, ha='center', va='center',
transform=axes[3, 0][1].transAxes)
axes[-5, 0][0].text(1, -0.5,
'Time [s]', fontsize=14, ha='center', va='center',
transform=axes[-5, 0][0].transAxes)
axes[-5, 1][0].text(1, -0.5,
'Time [s]', fontsize=14, ha='center', va='center',
transform=axes[-5, 1][0].transAxes)
axes[-5, 2][0].text(0.5, -0.5,
'Time [s]', fontsize=14, ha='center', va='center',
transform=axes[-5, 2][0].transAxes)
axes[-1, 0][0].text(1, -0.55,
'Time [s]', fontsize=18, ha='center', va='center',
transform=axes[-1, 0][0].transAxes)
axes[-1, 1][1].text(1, -0.55,
'Time [s]', fontsize=18, ha='center', va='center',
transform=axes[-1, 1][1].transAxes)
axes[-1, 2][3].text(0.5, -0.55,
'Time [s]', fontsize=18, ha='center', va='center',
transform=axes[-1, 2][3].transAxes)
axes[5, 0].text(-0.25, -0.25, 'Normalised current', rotation=90, fontsize=18,
transform=axes[5, 0].transAxes,
horizontalalignment='center',
verticalalignment='center')
for aj in [1, 2]:
# Add special x,y-label for IV protocols
axes[1, aj].set_xlabel('Voltage [mV]', fontsize=14)
for ai in [0, 1]:
axes[ai, 1].set_ylim(-0.05, 1.05)
axes[ai, 2].set_ylim(-5, 1.2)
#
# Model
#
prt2model = {}
for prt in protocol_list:
protocol_def = protocol_funcs[prt]
if type(protocol_def) is str:
protocol_def = '%s/%s' % (protocol_dir, protocol_def)
prt2model[prt] = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=temperatures[0], # K
transform=None,
useFilterCap=False) # ignore capacitive spike
#
# All cells
#
# Get ranking
RANKED_CELLS = []
with open(cell_ranking_file, 'r') as f:
for l in f:
if not l.startswith('#'):
RANKED_CELLS.append(l.split()[0])
import seaborn as sns
# colour_list = sns.cubehelix_palette(len(SORTED_CELLS))
colour_list_d = sns.color_palette('Blues', n_colors=len(RANKED_CELLS))
colour_list_d = colour_list_d.as_hex()
colour_list_s = sns.color_palette('Reds', n_colors=len(RANKED_CELLS))
colour_list_s = colour_list_s.as_hex()
for i_prt, prt in enumerate(protocol_list):
# Calculate axis index
ai, aj = 4 * int(i_prt / 3), i_prt % 3
# Title
if prt == 'staircaseramp':
axes[ai, aj].set_title('Calibration', fontsize=16, loc='left')
else:
axes[ai, aj].set_title('Validation %s' % i_prt, fontsize=16,
loc='left')
# Add label!
if prt not in protocol_iv:
axes[ai, aj].text(-0.1, 1.1, string.ascii_uppercase[i_prt],
transform=axes[ai, aj].transAxes, size=20,
weight='bold')
else:
axes[ai, aj].text(-0.1, 1.06, string.ascii_uppercase[i_prt],
transform=axes[ai, aj].transAxes, size=20,
weight='bold')
# Time point
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir, file_list[0],
prt), delimiter=',', skiprows=1)
# Protocol
model = prt2model[prt]
if prt not in protocol_iv:
times_sim = np.copy(times)
voltage = model.voltage(times_sim) * 1000
else:
times_sim = protocol_iv_times[prt](times[1] - times[0])
voltage = model.voltage(times_sim) * 1000
voltage, t = protocol_iv_convert[prt](voltage, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
# Pre-load a reference trace to do normalisation
if norm_method == 1 and isNorm:
ref_file = 'herg25oc1'
ref_cell = 'D19'
if prt == 'staircaseramp':
ref_data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir_staircase,
ref_file, prt, ref_cell), delimiter=',', skiprows=1)
elif prt not in protocol_iv:
ref_data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, ref_file,
prt, ref_cell), delimiter=',', skiprows=1)
# Re-leak correct the leak corrected data...
g_releak = fmin(score_leak, [0.0], args=(ref_data, voltage, times,
protocol_leak_check[prt]), disp=False)
ref_data = I_releak(g_releak[0], ref_data, voltage)
else:
ref_data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, ref_file,
prt, ref_cell), delimiter=',', skiprows=1)
for i in range(ref_data.shape[1]):
g_releak = fmin(score_leak, [0.0], args=(ref_data[:, i],
voltage[:, i], times,
protocol_leak_check[prt]), disp=False)
ref_data[:, i] = I_releak(g_releak[0], ref_data[:, i],
voltage[:, i])
assert(len(ref_data) == len(times))
# Set axes limit for normalisation and draw zoom-in boxes
if prt not in protocol_iv:
if prt in ['ap1hz', 'ap2hz']:
maximum = np.percentile(ref_data, 99.99)
minimum = np.percentile(ref_data, 0.01)
maximum += 0.25 * np.abs(maximum)
minimum -= 0.5 * np.abs(minimum)
else:
maximum = np.percentile(ref_data, 99.5)
minimum = np.percentile(ref_data, 0.5)
maximum += 0.25 * np.abs(maximum)
minimum -= 0.5 * np.abs(minimum)
for i in range(2):
axes[ai + i, aj].set_ylim([minimum, maximum])
axes[ai + i, aj].set_xlim([times[0], times[-1]])
# set specific ylim
if prt == 'ap1hz':
axes[ai + i, aj].set_ylim([-40, 90])
minimum_t, maximum_t = -40, 90
elif prt == 'ap2hz':
axes[ai + i, aj].set_ylim([-40, 180])
minimum_t, maximum_t = -40, 180
else:
minimum_t, maximum_t = minimum, maximum
# Zoom in ones
for i_z, (t_i, t_f) in enumerate(zoom_in_win[prt]):
for i in range(2, 4):
axes[ai + i, aj][i_z].set_ylim([minimum, maximum])
# Find closest time
idx_i = np.argmin(np.abs(times - t_i))
idx_f = np.argmin(np.abs(times - t_f))
# And plot gray boxes over second panels
codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY]
vertices = np.array([(times[idx_i], minimum_t),
(times[idx_i], maximum_t),
(times[idx_f], maximum_t),
(times[idx_f], minimum_t),
(0, 0)], float)
pathpatch1 = PathPatch(Path(vertices, codes),
facecolor='#2ca02c',
edgecolor='#2ca02c',
alpha=0.75)
pathpatch2 = PathPatch(Path(vertices, codes),
facecolor='#2ca02c',
edgecolor='#2ca02c',
alpha=0.75)
plt.sca(axes[ai, aj])
pyplot_axes1 = plt.gca()
pyplot_axes1.add_patch(pathpatch1)
plt.sca(axes[ai + 1, aj])
pyplot_axes2 = plt.gca()
pyplot_axes2.add_patch(pathpatch2)
# Set arrow and time duration
axes[ai + 3, aj][i_z].arrow(1, -0.075, -1, 0,
length_includes_head=True,
head_width=0.03, head_length=0.05, clip_on=False,
fc='k', ec='k', transform=axes[ai + 3, aj][i_z].transAxes)
axes[ai + 3, aj][i_z].arrow(0, -0.075, 1, 0,
length_includes_head=True,
head_width=0.03, head_length=0.05, clip_on=False,
fc='k', ec='k', transform=axes[ai + 3, aj][i_z].transAxes)
axes[ai + 3, aj][i_z].text(0.5, -0.2,
'%s' % np.around(t_f - t_i, decimals=3),
transform=axes[ai + 3, aj][i_z].transAxes,
horizontalalignment='center',
verticalalignment='center')
for i_CELL, CELL in enumerate(RANKED_CELLS):
file_name, cell = CELL[:-3], CELL[-3:]
# Data
if prt == 'staircaseramp':
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir_staircase,
file_name, prt, cell), delimiter=',', skiprows=1)
elif prt not in protocol_iv:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
# Re-leak correct the leak corrected data...
g_releak = fmin(score_leak, [0.0], args=(data, voltage, times,
protocol_leak_check[prt]), disp=False)
data = I_releak(g_releak[0], data, voltage)
else:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
for i in range(data.shape[1]):
g_releak = fmin(score_leak, [0.0], args=(data[:, i],
voltage[:, i], times,
protocol_leak_check[prt]), disp=False)
data[:, i] = I_releak(g_releak[0], data[:, i], voltage[:, i])
raw_data = np.copy(data)
if isSmooth:
from scipy.signal import savgol_filter
if prt not in protocol_iv:
data = savgol_filter(data, window_length=smooth_win,
polyorder=smooth_order)
weak_filter_data = savgol_filter(data,
window_length=smooth_win_small,
polyorder=smooth_order_small)
elif False:
for i in range(data.shape[1]):
data[:, i] = savgol_filter(data[:, i],
window_length=smooth_win,
polyorder=3)
assert(len(data) == len(times))
# Fitted parameters
param_file = '%s/%s/%s-staircaseramp-%s-solution-%s.txt' % \
(file_dir, file_name, file_name, cell, fit_seed)
obtained_parameters = np.loadtxt(param_file)
# Simulation
simulation = model.simulate(obtained_parameters, times_sim)
if prt in protocol_iv:
simulation, t = protocol_iv_convert[prt](simulation, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
# Normalisation
if norm_method == 0:
# just pick the max (susceptible to nise)
norm_d = np.max(data) if isNorm else 1.
norm_s = np.max(simulation) if isNorm else 1.
elif norm_method == 1:
# Kylie's method, use a reference trace
# (should give the most similar plots)
from scipy.optimize import minimize
res_s = minimize(lambda x: np.sum(np.abs(simulation / x
- ref_data)), x0=1.0)
norm_s = res_s.x[0] if isNorm else 1.
res_d = minimize(lambda x: np.sum(np.abs(data / x
- ref_data)), x0=norm_s)
norm_d = res_d.x[0] if isNorm else 1.
if norm_d > 1e2 or not np.isfinite(norm_d):
# Maybe smoothing making fitting harder?
norm_d = norm_s
if norm_s > 1e2 or not np.isfinite(norm_s):
# Simulation went wrong?!
raise RuntimeError('Simulation for %s %s %s seems' % \
(file_name, cell, prt) + ' problematic')
elif norm_method == 2:
# use 95th percentile (less susceptible to nise)
norm_d = np.percentile(data, 95) if isNorm else 1.
norm_s = np.percentile(simulation, 95) if isNorm else 1.
else:
raise ValueError('Unknown normalisation method, choose' +
' norm_method from 0-2')
# Plot
if prt not in protocol_iv:
# simulation
axes[ai, aj].plot(times, simulation / norm_s, lw=0.5, alpha=0.5,
c=colour_list_s[i_CELL])
# recording
axes[ai + 1, aj].plot(times, data / norm_d, lw=0.5, alpha=0.5,
c=colour_list_d[i_CELL])
else:
iv_v = protocol_iv_v[prt]() * 1000 # mV
# simulation
iv_i_s = protocols.get_corrected_iv(simulation, times,
*protocol_iv_args[prt]())
axes[ai, aj].plot(iv_v, iv_i_s / np.max(iv_i_s), lw=0.5, alpha=0.5,
c=colour_list_s[i_CELL])
# recording
iv_i_d = protocols.get_corrected_iv(data, times,
*protocol_iv_args[prt]())
axes[ai + 1, aj].plot(iv_v, iv_i_d / np.max(iv_i_d), lw=0.5,
alpha=0.5, c=colour_list_d[i_CELL])
# Plot zoom in version
if prt not in protocol_iv:
for i_z, (t_i, t_f) in enumerate(zoom_in_win[prt]):
# Find closest time
idx_i = np.argmin(np.abs(times - t_i))
idx_f = np.argmin(np.abs(times - t_f))
zoom_in_segment_data = raw_data[idx_i:idx_f]
zoom_in_segment_sim = simulation[idx_i:idx_f]
axes[ai + 2, aj][i_z].plot(times[idx_i:idx_f],
zoom_in_segment_sim / norm_s,
lw=0.5, alpha=0.5, c=colour_list_s[i_CELL])
axes[ai + 3, aj][i_z].plot(times[idx_i:idx_f],
zoom_in_segment_data / norm_d,
lw=0.5, alpha=0.5, c=colour_list_d[i_CELL])
axes[ai + 2, aj][i_z].set_xlim([times[idx_i], times[idx_f]])
axes[ai + 3, aj][i_z].set_xlim([times[idx_i], times[idx_f]])
# Add trapezium over second and third panels
if i_CELL == 0:
top_v = [(times[idx_i], minimum_t), (times[idx_f], minimum_t)]
bottom_v = axes[ai + 2, aj][i_z].transData.transform(
[(times[idx_f], maximum),
(times[idx_i], maximum)])
inv = axes[ai + 1, aj].transData.inverted()
codes = [Path.MOVETO] + [Path.LINETO] * 3 \
+ [Path.CLOSEPOLY]
vertices = list(top_v) + list(inv.transform(bottom_v)) \
+ list([(0, 0)])
pathpatch = PathPatch(Path(vertices, codes),
facecolor='#2ca02c',
edgecolor='#2ca02c',
clip_on=False,
alpha=0.15)
plt.sca(axes[ai + 1, aj])
pyplot_axes = plt.gca()
pyplot_axes.add_patch(pathpatch)
#
# Final adjustment and save
#
grid.tight_layout(fig, pad=1.0, rect=(0.02, 0.03, 1, 1))
grid.update(wspace=20, hspace=0.0)
plt.savefig('%s/fitting-and-validation-selected-cells-zoom.png' % savedirlr,
bbox_inch='tight', pad_inches=0, dpi=100)
plt.savefig('%s/fitting-and-validation-selected-cells-zoom.png' % savedir,
bbox_inch='tight', pad_inches=0, dpi=300)
# This pdf version can get up to 40+MB!
plt.savefig('%s/fitting-and-validation-selected-cells-zoom.pdf' % savedir,
format='pdf', bbox_inch='tight', pad_inches=0)
print('Done')