-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrev-variability-scatterplot.py
220 lines (190 loc) · 7.61 KB
/
rev-variability-scatterplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python2
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pickle
import glob
import re
import string
import sys
sys.path.append('../lib')
import plot_hbm_func as plot_func
saveas = 'figs/paper/rev-variability-scatter-'
n_non_model_param = 1
param_name = [r'$g_{Kr}$', r'$p_1$', r'$p_2$', r'$p_3$', r'$p_4$',
r'$p_5$', r'$p_6$', r'$p_7$', r'$p_8$', 'noise']
plotKylie = False
if not os.path.isdir(os.path.dirname(saveas)):
os.makedirs(os.path.dirname(saveas))
# Mean/Covariance
simple_chain_final = np.loadtxt(
'./out-mcmc/herg25oc1-pseudohbm-lognorm-mean.txt')
with open('./out-mcmc/herg25oc1-pseudohbm-lognorm-cov.pkl', 'rb') as f:
simple_cov_final = pickle.load(f)
simple_chain_final = simple_chain_final[::250]
simple_cov_final = simple_cov_final[::250]
# QC values
qc_file = sys.argv[1]
value_exp_all = np.loadtxt(qc_file)
try:
to_add_name = sys.argv[2]
except IndexError:
to_add_name = 'tmp'
saveas += to_add_name
WELL_ID = [l+str(i).zfill(2)
for l in string.ascii_uppercase[:16]
for i in range(1,25)]
# Load exp param
param_exp = []
value_exp = []
path_to_exp = './out/herg25oc1-mcmcmean'
files_exp = glob.glob(path_to_exp + '/*.txt')
for file_exp in files_exp:
p = np.loadtxt(file_exp)
param_exp.append(p)
c = re.findall('staircaseramp-(\w+)-solution', file_exp)[0]
value_exp.append(value_exp_all[WELL_ID.index(c)])
param_exp = np.array(param_exp)
# Load Kylie's param
param_kylie = []
path_to_kylies = './kylie-room-temperature'
files_kylie = glob.glob(path_to_kylies + '/*')
for file_kylie in files_kylie:
p = np.loadtxt(file_kylie)
# Change conductance unit nS->pS (new parameter use V, but here mV)
p[0] = p[0] * 1e3
param_kylie.append(p)
param_kylie = np.array(param_kylie)
# Load syn param from voltage-artefact
param_syn = []
path_to_syn = './out/herg25oc1-fakedata-voltageoffset'
files_syn = glob.glob(path_to_syn + '/*.txt')
for file_syn in files_syn:
p = np.loadtxt(file_syn)
param_syn.append(p)
param_syn = np.array(param_syn)
# Some checks and def var
assert(param_syn.shape[1] == param_exp.shape[1])
assert(param_kylie.shape[1] == param_exp.shape[1])
n_param = param_exp.shape[1]
# Change things to log
param_exp = np.log(param_exp)
param_kylie = np.log(param_kylie)
param_syn = np.log(param_syn)
# Setup color
import seaborn as sns
colour_list = sns.color_palette('GnBu_d', n_colors=len(value_exp))
colour_list.as_hex()
argsort_value_exp = np.asarray(value_exp).argsort()
rank_value_exp = np.empty_like(argsort_value_exp)
rank_value_exp[argsort_value_exp] = np.arange(len(value_exp))
sorted_colour_list = [colour_list[i] for i in rank_value_exp]
# Plot the params!
fig_size = (3 * n_param, 3 * n_param)
# fig_size = (12, 12)
fig, axes = plt.subplots(n_param, n_param, figsize=fig_size)
for i in range(n_param):
for j in range(n_param):
if i == j:
# Diagonal: no plot
# axes[i, j].axis('off')
axes[i, j].set_xticklabels([])
axes[i, j].set_yticklabels([])
axes[i, j].tick_params(axis='both', which='both', bottom=False,
top=False, left=False, right=False,
labelleft=False, labelbottom=False)
elif i < j:
# Top-right: no plot
axes[i, j].axis('off')
else:
# Lower-left: plot scatters
px_e = param_exp[:, j]
py_e = param_exp[:, i]
axes[i, j].scatter(px_e, py_e, c=sorted_colour_list,
alpha=0.99)
axes[i, j].scatter(px_e[argsort_value_exp[0]],
px_e[argsort_value_exp[0]],
c=sorted_colour_list[argsort_value_exp[0]],
label='Min')
axes[i, j].scatter(px_e[argsort_value_exp[-1]],
px_e[argsort_value_exp[-1]],
c=sorted_colour_list[argsort_value_exp[-1]],
label='Max')
px_s = param_syn[:, j]
py_s = param_syn[:, i]
axes[i, j].scatter(px_s, py_s, c='#d62728',
label='Syn. voltage offset')
xmin = min(np.min(px_e), np.min(px_s))
xmax = max(np.max(px_e), np.max(px_s))
ymin = min(np.min(py_e), np.min(py_s))
ymax = max(np.max(py_e), np.max(py_s))
if plotKylie:
px_k = param_kylie[:, j]
py_k = param_kylie[:, i]
axes[i, j].scatter(px_k, py_k, c='k',
label='Beattie et al. 2018')
xmin = min(xmin, np.min(px_k))
xmax = max(xmax, np.max(px_k))
ymin = min(ymin, np.min(py_k))
ymax = max(ymax, np.max(py_k))
# 2 sigma covers up 95.5%
xmin = min(xmin, np.min(simple_chain_final[:, j]) \
- 2.5 * np.max(np.sqrt(simple_cov_final[:, j, j])))
xmax = max(xmax, np.max(simple_chain_final[:, j]) \
+ 2.5 * np.max(np.sqrt(simple_cov_final[:, j, j])))
ymin = min(ymin, np.min(simple_chain_final[:, i]) \
- 2.5 * np.max(np.sqrt(simple_cov_final[:, i, i])))
ymax = max(ymax, np.max(simple_chain_final[:, i]) \
+ 2.5 * np.max(np.sqrt(simple_cov_final[:, i, i])))
axes[i, j].set_xlim(xmin, xmax)
axes[i, j].set_ylim(ymin, ymax)
for ims, (m, s) in enumerate(zip(simple_chain_final,
simple_cov_final)):
# for xj, yi
mu = np.array([m[j], m[i]])
cov = np.array([[ s[j, j], s[j, i] ],
[ s[i, j], s[i, i] ]])
xx, yy = plot_func.plot_cov_ellipse(mu, cov)
if ims == 0:
axes[i, j].plot(xx, yy, c='#1f77b4', alpha=0.2)
else:
axes[i, j].plot(xx, yy, c='#1f77b4', alpha=0.2)
# Set tick labels
if i < n_param - 1 and i >= j:
# Only show x tick labels for the last row
axes[i, j].set_xticklabels([])
if j > 0 and i >= j:
# Only show y tick labels for the first column
axes[i, j].set_yticklabels([])
# Set axis labels and ticks
if i > 0:
axes[i, 0].set_ylabel(param_name[i], fontsize=32)
axes[i, 0].tick_params('y', labelsize=26)
if i < n_param - 1:
axes[-1, i].set_xlabel(param_name[i], fontsize=32)
axes[-1, i].tick_params('x', labelsize=26, rotation=30)
handles, labels = axes[1, 0].get_legend_handles_labels()
fig.legend(handles, labels, fontsize=32, loc='lower left',
bbox_to_anchor=(1.15, 1.15),
bbox_transform=axes[1, 0].transAxes)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
# plt.savefig('%scov-plot-3.png' % saveas, bbox_inch='tight', dpi=300)
# Add boxes for Michael
import sys
sys.path.append('../lib')
import plot_hbm_func as plot_func
for i in range(1, n_param):
plot_func.addbox(axes, (i, 0), color='#d9d9d9', alpha=0.75)
for i in range(1, 5):
for j in range(1, 5):
if i > j:
plot_func.addbox(axes, (i, j), color='#fdb462', alpha=0.35)
# Maybe 3 colours
for i in range(5, n_param):
for j in range(5, n_param):
if i > j:
plot_func.addbox(axes, (i, j), color='#ccebc5', alpha=0.75)
plt.savefig(saveas, bbox_inch='tight', dpi=200)
plt.close()