-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpaper-fitting-and-validation-eyring-q10.py
676 lines (608 loc) · 25.6 KB
/
paper-fitting-and-validation-eyring-q10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
#!/usr/bin/env python2
from __future__ import print_function
import sys
sys.path.append('../lib')
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch
import string
import seaborn as sns
import protocols
from protocols import est_g_staircase
import model_ikr as m
from releakcorrect import I_releak, score_leak, protocol_leak_check
from scipy.optimize import fmin
# Set parameter transformation
import parametertransform
transform_to_model_param = parametertransform.log_transform_to_model_param
transform_from_model_param = parametertransform.log_transform_from_model_param
try:
prt = sys.argv[1]
except IndexError:
print('Usage: python %s [protocol]' % __file__)
sys.exit()
# Set seed
np.random.seed(101)
savedir = './figs/paper'
if not os.path.isdir(savedir):
os.makedirs(savedir)
savedirlr = './figs/paper-low-res'
if not os.path.isdir(savedirlr):
os.makedirs(savedirlr)
# Colours for fan chart
fan_blue = ['#b5c7d5',
'#adc1d0',
'#91abbc',
'#85a0b1',
'#6b8fa9',
'#62869f',
'#587c96',
'#477390',
'#3f6c88',
]
#
# Protocol info
#
protocol_funcs = {
'staircaseramp': protocols.leak_staircase,
'pharma': protocols.pharma, # during drug application
'apab': 'protocol-apab.csv',
'apabv3': 'protocol-apabv3.csv',
'ap05hz': 'protocol-ap05hz.csv',
'ap1hz': 'protocol-ap1hz.csv',
'ap2hz': 'protocol-ap2hz.csv',
'sactiv': protocols.sactiv,
'sinactiv': protocols.sinactiv,
}
protocol_dir = '../protocol-time-series'
# IV protocol special treatment
protocol_iv = [
'sactiv',
'sinactiv',
]
protocol_iv_times = {
'sactiv': protocols.sactiv_times,
'sinactiv': protocols.sinactiv_times,
}
protocol_iv_convert = {
'sactiv': protocols.sactiv_convert,
'sinactiv': protocols.sinactiv_convert,
}
protocol_iv_args = {
'sactiv': protocols.sactiv_iv_arg,
'sinactiv': protocols.sinactiv_iv_arg,
}
protocol_iv_v = {
'sactiv': protocols.sactiv_v,
'sinactiv': protocols.sinactiv_v,
}
data_dir_staircase = '../data'
data_dir = '../data-autoLC'
file_dir = './out'
file_list = [
'herg25oc',
'herg27oc',
'herg30oc',
'herg33oc',
'herg37oc',
]
temperatures = np.array([25.0, 27.0, 30.0, 33.0, 37.0])
temperatures += 273.15 # in K
fit_seed = '542811797'
# Load pseudo2hbm
mean_chains = []
for i_temperature, (file_name, temperature) in enumerate(zip(file_list,
temperatures)):
load_file = './out-mcmc/%s-pseudo2hbm-lognorm-mean.txt' % (file_name)
mean_chain = np.loadtxt(load_file) # transformed
mean_chains.append(mean_chain)
mean_chains = np.asarray(mean_chains)
# Eyring and Q10
from temperature_models import eyringA, eyringB, eyringG, eyringT
from temperature_models import q10A, q10B, q10G, q10T
from temperature_models import eyring_transform_to_model_param
eyring_mean = np.loadtxt('%s/eyring-mean.txt' % file_dir)
q10_mean = np.loadtxt('%s/q10-mean.txt' % file_dir)
#
# Where to zoom in
#
norm_zoom = False
zoom_in_win = { # protocol: [[(time_start, time_end), ...] in second,
# [(grid_start, grid_end), ...] total 16]
# 'staircaseramp': [(1.8, 2.5), (11.395, 11.415), (13.895, 13.915),
# (14.375, 14.925)],
'staircaseramp': [[(1.875, 2.125), (11.35, 11.45), (13.85, 13.95),
(14.375, 14.625)],
[(0, 5), (5, 8), (8, 11), (11, 16)]],
'pharma': [(0.64, 0.66), (1.14, 1.16)],
'apab': [(0.0475, 0.0575), (0.32, 0.33)],
'apabv3': [(0.05, 0.07)],
'ap05hz': [[(0.04, 0.07), (2.04, 2.07)],
[(0, 8), (8, 16)]],
'ap1hz': [[(0.04, 0.07), (1.04, 1.07),
(2.04, 2.07), (3.04, 3.07)],
[(0, 4), (4, 8), (8, 12), (12, 16)]],
'ap2hz': [[(0.045, 0.06),# (0.545, 0.56),
(1.045, 1.06),# (1.545, 1.56),
(2.045, 2.06),# (2.545, 2.56),
(3.045, 3.06)],
[(0, 4), (4, 8), (8, 12), (12, 16)]],
'sactiv': None,
'sinactiv': None,
}
isNorm = True
norm_method = 1
#
# Do a very very tailored version........ :(
#
fig = plt.figure(figsize=(18, 18))
n_maxzoom = 7
bigygap = 3
n_ygrid = 4 * 6
n_subpanels = 4
n_xgrid_1 = 24
n_xgrid_2 = 16
n_xgrid = n_xgrid_1 + n_xgrid_2 + 1 # extra 1 for space before zoom-in
bigxgap = 4
grid = plt.GridSpec(3 * n_ygrid + 2 * bigygap + 6,
2 * n_xgrid + bigxgap, hspace=0.0, wspace=0.2)
axes = np.empty([3 * n_subpanels + 1, 4], dtype=object)
# long list here:
for j in [0, 1]:
# 0 row for protocol
jj = 2 * j
j_shift = n_xgrid + bigxgap
axes[0, jj] = fig.add_subplot(grid[0:4, j*j_shift:j*j_shift+n_xgrid_1])
axes[0, jj].set_xticklabels([])
for i in range(3):
# i 'big row'
n_shift = i * (n_ygrid + bigygap) + 6 # 6 is for protocol + gap
n_panel = n_subpanels * i
for j in range(2):
if (i * 2 + j + 1) > len(temperatures):
continue
# j 'big column'
j_shift = n_xgrid + bigxgap
for k in range(4):
# k 'sub row'
ai, aj = n_panel + k + 1, 2 * j
# first 'sub column'
axes[ai, aj] = fig.add_subplot(
grid[n_shift + 6 * k:n_shift + 6 * (k + 1),
j * j_shift:j * j_shift + n_xgrid_1])
if k != 3:
axes[ai, aj].set_xticklabels([])
# second 'sub column'
axes[ai, aj + 1] = np.empty(n_maxzoom, dtype=object)
n_zoom = len(zoom_in_win[prt][1])
for l in range(n_zoom):
j_grid_start = j * j_shift + n_xgrid_1 + 1\
+ zoom_in_win[prt][1][l][0] # extra 1 for gap
j_grid_end = j * j_shift + n_xgrid_1 + 1 \
+ zoom_in_win[prt][1][l][1] # extra 1 for gap
axes[ai, aj + 1][l] = fig.add_subplot(
grid[n_shift + 6 * k:n_shift + 6 * (k + 1),
j_grid_start:j_grid_end])
axes[ai, aj + 1][l].set_xticklabels([])
axes[ai, aj + 1][l].set_xticks([])
axes[ai, aj + 1][l].set_yticklabels([])
axes[ai, aj + 1][l].set_yticks([])
# Labels
axes[0, 0].text(-0.15, 0.5, 'Voltage\n[mV]', fontsize=14,
rotation=90, ha='center', va='center',
transform=axes[0, 0].transAxes)
Ts_oC = temperatures - 273.15 # in oC
for i in range(3):
ai = i * n_subpanels + 1
for j in range(2):
if (i * 2 + j + 1) > len(temperatures):
continue
T_oC = int(temperatures[i * 2 + j] - 273.15)
axes[ai, 2 * j].set_ylabel('$%d\pm1^\circ$C' % T_oC, fontsize=14)
axes[ai + 1, 0].text(-0.125, 0, 'Normalised currents', fontsize=18,
rotation=90, ha='center', va='center',
transform=axes[ai + 1, 0].transAxes)
axes[-1, 0].set_xlabel('Time [s]', fontsize=18)
axes[-5, 2 * j].set_xlabel('Time [s]', fontsize=18)
# Liudmila suggested common y-axis
n_zoom = len(zoom_in_win[prt][1])
for i in range(3):
ai = i * n_subpanels + 1
for j in range(2):
aj = 2 * j
if (i * 2 + j + 1) > len(temperatures):
continue
if prt == 'staircaseramp':
for ii in range(4):
axes[ai + ii, aj].set_ylim((-1, 1.5))
for l in range(n_zoom):
axes[ai + ii, aj + 1][l].set_ylim((-1, 1.5))
else:
for ii in range(4):
axes[ai + ii, aj].set_ylim((-0.25, 1.5))
for l in range(n_zoom):
axes[ai + ii, aj + 1][l].set_ylim((-0.25, 1.5))
#
# Plot!
#
# Normalisation factors for data
if prt == 'staircaseramp':
norm_data_all = []
else:
try:
norm_data_all = np.loadtxt('./out/norm-factors/data.txt',
skiprows=1).T
except IOError:
raise IOError('Expect running for prt=staircaseramp first')
if norm_method == 3:
if prt == 'staircaseramp':
norm_sim_all = []
norm_eyring_all = []
norm_q10_all = []
else:
try:
norm_sim_all = np.loadtxt('./out/norm-factors/hbm.txt',
skiprows=1).T
norm_eyring_all = np.loadtxt('./out/norm-factors/eyring.txt',
skiprows=1).T
norm_q10_all = np.loadtxt('./out/norm-factors/q10.txt',
skiprows=1).T
except IOError:
raise IOError('Expect running for prt=staircaseramp first')
for i_T, (file_name, T) in enumerate(zip(file_list, temperatures)):
# Model
protocol_def = protocol_funcs[prt]
if type(protocol_def) is str:
protocol_def = '%s/%s' % (protocol_dir, protocol_def)
model = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=temperatures[0], # K
transform=None,
useFilterCap=False) # ignore capacitive spike
# Calculate axis index
ai, aj = n_subpanels * int(i_T / 2) + 1, 2 * (i_T % 2)
# Add label!
axes[ai, aj].text(-0.125, 1.05, string.ascii_uppercase[i_T],
transform=axes[ai, aj].transAxes, size=20,
weight='bold')
# Time point
if prt == 'staircaseramp':
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir_staircase,
file_name + '1', prt), delimiter=',', skiprows=1)
else:
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir, file_name + '1',
prt), delimiter=',', skiprows=1)
# Protocol
if prt not in protocol_iv:
times_sim = np.copy(times)
voltage = model.voltage(times_sim) * 1000
else:
times_sim = protocol_iv_times[prt](times[1] - times[0])
voltage = model.voltage(times_sim) * 1000
voltage, t = protocol_iv_convert[prt](voltage, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
if i_T < 2:
if prt not in protocol_iv:
# protocol
axes[ai - 1, aj].plot(times, voltage, c='#696969')
else:
# protocol
for i in range(voltage.shape[1]):
axes[ai - 1, aj].plot(times, voltage[:, i], c='#696969')
axes[ai - 1, aj].set_ylim((np.min(voltage) - 10, np.max(voltage) + 15))
# Get ranking
cell_ranking_file = './manualselection/paper-rank-%s.txt' % file_name
RANKED_CELLS = []
with open(cell_ranking_file, 'r') as f:
for l in f:
if not l.startswith('#'):
RANKED_CELLS.append(l.split()[0])
# RANKED_CELLS = RANKED_CELLS[:10] # TODO remove
# colour_list = sns.cubehelix_palette(len(SORTED_CELLS))
colour_list = sns.color_palette('Blues', n_colors=len(RANKED_CELLS))
colour_list = colour_list.as_hex()
for i_CELL, CELL in enumerate(RANKED_CELLS):
file_name, cell = CELL[:-3], CELL[-3:]
# Data
if prt == 'staircaseramp':
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir_staircase,
file_name, prt, cell), delimiter=',', skiprows=1)
elif prt not in protocol_iv:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
# Re-leak correct the leak corrected data...
g_releak = fmin(score_leak, [0.0], args=(data, voltage, times,
protocol_leak_check[prt]), disp=False)
data = I_releak(g_releak[0], data, voltage)
else:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
for i in range(data.shape[1]):
g_releak = fmin(score_leak, [0.0], args=(data[:, i],
voltage[:, i], times,
protocol_leak_check[prt]), disp=False)
data[:, i] = I_releak(g_releak[0], data[:, i], voltage[:, i])
assert(len(data) == len(times))
# Normalisation
if prt == 'staircaseramp':
norm_data = est_g_staircase(data, times, p0=[800, 0.025],
debug=False) if isNorm else 1.
if i_CELL == 0:
norm_data_all.append([])
norm_data_all[-1].append(norm_data)
else:
norm_data = norm_data_all[i_T][i_CELL]
# Plot
if prt not in protocol_iv:
axes[ai, aj].plot(times, data / norm_data,
lw=0.2, alpha=0.1, c=colour_list[i_CELL])
else:
iv_i = protocols.get_corrected_iv(data, times,
*protocol_iv_args[prt]())
iv_v = protocol_iv_v[prt]() * 1000 # mV
axes[ai, aj].plot(iv_v, iv_i / np.max(iv_i), lw=0.5, alpha=0.5,
c=colour_list[i_CELL])
# Zoom in for data
if prt not in protocol_iv:
for i_z, (t_i, t_f) in enumerate(zoom_in_win[prt][0]):
# Find closest time
idx_i = np.argmin(np.abs(times - t_i))
idx_f = np.argmin(np.abs(times - t_f))
# Segments
zoom_in_segment_data = data[idx_i:idx_f]
# Plot
axes[ai, aj + 1][i_z].plot(times[idx_i:idx_f],
zoom_in_segment_data / norm_data,
lw=0.2, alpha=0.1, c=colour_list[i_CELL])
axes[ai, aj + 1][i_z].set_xlim([times[idx_i], times[idx_f]])
# Plot data as background
data_fancharts_dir = './out/data-fancharts'
percentiles = np.loadtxt('%s/percentiles.txt' % data_fancharts_dir)
fan_chart_data_top = np.loadtxt('%s/%s-%s-top.txt' % \
(data_fancharts_dir, file_name, prt))
fan_chart_data_bot = np.loadtxt('%s/%s-%s-bot.txt' % \
(data_fancharts_dir, file_name, prt))
if prt not in protocol_iv:
fan_x = np.loadtxt('%s/%s-%s-times.txt' % \
(data_fancharts_dir, file_name, prt))
else:
fan_x = np.loadtxt('%s/%s-%s-voltage.txt' % \
(data_fancharts_dir, file_name, prt))
for ii in range(1, 4):
for i_p, p in enumerate(percentiles):
alpha = 0.8
color = fan_blue[i_p]
top = fan_chart_data_top[:, i_p]
bot = fan_chart_data_bot[:, i_p]
axes[ai + ii, aj].fill_between(fan_x, top, bot, color=color,
alpha=alpha, linewidth=0)
if prt not in protocol_iv:
axes[ai + ii, aj].fill_between(fan_x, top, bot,
alpha=alpha, linewidth=0, color=color)
axes[ai + ii, aj].fill_between(fan_x, top, bot,
alpha=alpha, linewidth=0, color=color)
# Models
# HBM mean parameters
hbm_T_mean = transform_to_model_param(
np.mean(mean_chains[i_T], axis=0))
simulation = model.simulate(hbm_T_mean, times_sim)
# Eyring parameters
eyring_T_mean = eyringT(eyring_mean, T)
eyring_model_param = eyring_transform_to_model_param(eyring_T_mean, T)
eyring_sim = model.simulate(eyring_model_param, times_sim)
# Q10 parameters
q10_T_mean = q10T(q10_mean, T)
q10_model_param = eyring_transform_to_model_param(q10_T_mean, T)
q10_sim = model.simulate(q10_model_param, times_sim)
if norm_method == 1:
# Kylie's method, use a reference trace
# (should give the most similar plots)
top = fan_chart_data_top[:, -1]
bot = fan_chart_data_bot[:, -1]
ref_data = (top + bot) / 2. # TODO
from scipy.optimize import minimize
res_s = minimize(lambda x: np.sum(
np.abs(simulation / x - ref_data)),
x0=np.abs(np.min(simulation)))
norm_sim = res_s.x[0] if isNorm else 1.
res_e = minimize(lambda x: np.sum(
np.abs(eyring_sim / x - ref_data)), x0=norm_sim)
norm_eyring = res_e.x[0] if isNorm else 1.
res_q = minimize(lambda x: np.sum(
np.abs(q10_sim / x - ref_data)), x0=norm_sim)
norm_q10 = res_q.x[0] if isNorm else 1.
if (norm_sim > 5e3 or not np.isfinite(norm_sim)):
# Simulation went wrong?!
raise RuntimeError('Simulation for HBM %s %s seems' % \
(file_name, prt) + ' problematic')
if (norm_eyring > 5e3 or not np.isfinite(norm_eyring)):
# Simulation went wrong?!
raise RuntimeError('Simulation for Eyring %s %s seems' % \
(file_name, prt) + ' problematic')
if (norm_q10 > 5e3 or not np.isfinite(norm_q10)):
# Simulation went wrong?!
raise RuntimeError('Simulation for Q10 %s %s seems' % \
(file_name, prt) + ' problematic')
elif norm_method == 3:
if prt == 'staircaseramp':
norm_sim = est_g_staircase(simulation, times_sim,
p0=[800, 0.025], debug=False)
norm_sim_all.append(norm_sim)
else:
norm_sim = norm_sim_all[i_T]
if prt == 'staircaseramp':
norm_eyring = est_g_staircase(eyring_sim, times_sim,
p0=[800, 0.025], debug=False)
norm_eyring_all.append(norm_eyring)
else:
norm_eyring = norm_eyring_all[i_T]
if prt == 'staircaseramp':
norm_q10 = est_g_staircase(q10_sim, times_sim, p0=[800, 0.025],
debug=False)
norm_q10_all.append(norm_q10)
else:
norm_q10 = norm_q10_all[i_T]
elif norm_method == 4:
norm_sim = hbm_T_mean[0]
norm_eyring = eyring_model_param[0]
norm_q10 = q10_model_param[0]
# Mean individual cells fit
if prt in protocol_iv:
simulation, t = protocol_iv_convert[prt](simulation, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
iv_i = protocols.get_corrected_iv(simulation, times,
*protocol_iv_args[prt]())
axes[ai + 1, aj].plot(iv_v, iv_i / np.max(iv_i), lw=1.5, alpha=1,
c='C1', zorder=1, label='HBM mean')
else:
axes[ai + 1, aj].plot(times_sim, simulation / norm_sim, alpha=1,
lw=1.5, c='C1', zorder=1, label='HBM mean')
# Eyring
if prt in protocol_iv:
eyring_sim, t = protocol_iv_convert[prt](eyring_sim, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
iv_i = protocols.get_corrected_iv(eyring_sim, times,
*protocol_iv_args[prt]())
axes[ai + 2, aj].plot(iv_v, iv_i / np.max(iv_i), lw=1.5, alpha=1,
c='C2', zorder=2, label='Eyring')
else:
axes[ai + 2, aj].plot(times_sim,
eyring_sim / norm_eyring,
alpha=1, lw=1.5, c='C2', zorder=2,
label='Eyring')
# Q10
if prt in protocol_iv:
q10_sim, t = protocol_iv_convert[prt](q10_sim, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
iv_i = protocols.get_corrected_iv(q10_sim, times,
*protocol_iv_args[prt]())
axes[ai + 3, aj].plot(iv_v, iv_i / np.max(iv_i), lw=1.5, alpha=1,
c='C3', zorder=3, label='Q10')
else:
axes[ai + 3, aj].plot(times_sim,
q10_sim / norm_q10,
alpha=1, lw=1.5, c='C3', zorder=3, label='Q10')
# Zoom in
if prt not in protocol_iv:
for i_z, (t_i, t_f) in enumerate(zoom_in_win[prt][0]):
# Data fan chart
# Find closest time
idx_fi = np.argmin(np.abs(fan_x - t_i))
idx_ff = np.argmin(np.abs(fan_x - t_f))
# Segment and Plot
for ii in range(1, 4):
for i_p, p in enumerate(percentiles):
alpha = 0.8
color = fan_blue[i_p]
top = fan_chart_data_top[:, i_p]
bot = fan_chart_data_bot[:, i_p]
zoom_in_segment_top = bot[idx_fi:idx_ff]
zoom_in_segment_bot = top[idx_fi:idx_ff]
axes[ai + ii, aj + 1][i_z].fill_between(
fan_x[idx_fi:idx_ff],
zoom_in_segment_top, zoom_in_segment_bot,
color=color, alpha=alpha, linewidth=0)
axes[ai + ii, aj + 1][i_z].set_xlim(
[fan_x[idx_fi], fan_x[idx_ff]])
# Models
# Find closest time
idx_i = np.argmin(np.abs(times_sim - t_i))
idx_f = np.argmin(np.abs(times_sim - t_f))
# Segments
zoom_in_segment_sim = simulation[idx_i:idx_f]
zoom_in_segment_eyring = eyring_sim[idx_i:idx_f]
zoom_in_segment_q10 = q10_sim[idx_i:idx_f]
# Plot
axes[ai + 1, aj + 1][i_z].plot(times_sim[idx_i:idx_f],
zoom_in_segment_sim / norm_sim,
alpha=1, lw=1.5, c='C1', zorder=1)
axes[ai + 2, aj + 1][i_z].plot(times_sim[idx_i:idx_f],
zoom_in_segment_eyring / norm_eyring,
alpha=1, lw=1.5, c='C2', zorder=2)
axes[ai + 3, aj + 1][i_z].plot(times_sim[idx_i:idx_f],
zoom_in_segment_q10 / norm_q10,
alpha=1, lw=1.5, c='C3', zorder=3)
for ii in range(1, 4):
axes[ai + ii, aj + 1][i_z].set_xlim(
[times_sim[idx_i], times_sim[idx_f]])
# Draw zoom-in boxes
if prt not in protocol_iv:
if prt == 'staircaseramp':
minimum = -1.
maximum = 1.5
else:
minimum = -0.25
maximum = 1.5
for i_z, (t_i, t_f) in enumerate(zoom_in_win[prt][0]):
# Find closest time
idx_i = np.argmin(np.abs(times - t_i))
idx_f = np.argmin(np.abs(times - t_f))
# And plot gray boxes over second panels
codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY]
vertices = np.array([(times[idx_i], minimum),
(times[idx_i], maximum),
(times[idx_f], maximum),
(times[idx_f], minimum),
(0, 0)], float)
for ii in range(4):
pathpatch = PathPatch(Path(vertices, codes),
facecolor='#2ca02c',
edgecolor='#2ca02c',
alpha=0.25)
plt.sca(axes[ai + ii, aj])
pyplot_axes = plt.gca()
pyplot_axes.add_patch(pathpatch)
# Set arrow and time duration
axes[ai + 3, aj + 1][i_z].arrow(1, -0.075, -1, 0,
length_includes_head=True,
head_width=0.03, head_length=0.05, clip_on=False,
fc='k', ec='k',
transform=axes[ai + 3, aj + 1][i_z].transAxes)
axes[ai + 3, aj + 1][i_z].arrow(0, -0.075, 1, 0,
length_includes_head=True,
head_width=0.03, head_length=0.05, clip_on=False,
fc='k', ec='k',
transform=axes[ai + 3, aj + 1][i_z].transAxes)
axes[ai + 3, aj + 1][i_z].text(0.5, -0.2,
'%s' % np.around(t_f - t_i, decimals=3),
transform=axes[ai + 3, aj + 1][i_z].transAxes,
horizontalalignment='center',
verticalalignment='center')
# Save norm factors
if prt == 'staircaseramp':
def boolean_indexing(v, fillval=np.nan):
lens = np.array([len(item) for item in v])
mask = lens[:,None] > np.arange(lens.max())
out = np.full(mask.shape,fillval)
out[mask] = np.concatenate(v)
return out
header = 'Order follows `../../../manualselection/paper-rank-*` columns' \
+ ' are %s' % (' '.join(file_list))
if not os.path.isdir('./out/norm-factors'):
os.makedirs('./out/norm-factors')
np.savetxt('./out/norm-factors/data.txt',
boolean_indexing(norm_data_all).T, header=header)
if norm_method == 3:
np.savetxt('./out/norm-factors/hbm.txt',
boolean_indexing(norm_sim_all).T, header=header)
np.savetxt('./out/norm-factors/eyring.txt',
boolean_indexing(norm_eyring_all).T, header=header)
np.savetxt('./out/norm-factors/q10.txt',
boolean_indexing(norm_q10_all).T, header=header)
#
# Final adjustment and save
#
grid.tight_layout(fig, pad=0.6, rect=[0.025, 0, 1, 1])
grid.update(wspace=0.12, hspace=0.0)
plt.savefig('%s/fitting-and-validation-eyring-q10-%s.png' % (savedirlr, prt),
bbox_inch='tight', pad_inches=0, dpi=100)
plt.savefig('%s/fitting-and-validation-eyring-q10-%s.png' % (savedir, prt),
bbox_inch='tight', pad_inches=0, dpi=300)
print('Done')