-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpaper-rank-cells.py
129 lines (111 loc) · 4.04 KB
/
paper-rank-cells.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python2
from __future__ import print_function
import sys
sys.path.append('../lib')
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
isNorm = True
import protocols
import model_ikr as m
savepath = './figs'
if not os.path.isdir(savepath):
os.makedirs(savepath)
#
# Protocols
#
protocol_funcs = {
'staircaseramp': protocols.leak_staircase,
'pharma': protocols.pharma, # during drug application
'apab': 'protocol-apab.csv',
'apabv3': 'protocol-apabv3.csv',
'ap05hz': 'protocol-ap05hz.csv',
'ap1hz': 'protocol-ap1hz.csv',
'ap2hz': 'protocol-ap2hz.csv',
'sactiv': None,
'sinactiv': None,
}
protocol_dir = '../protocol-time-series'
protocol = 'pharma'
data_dir = '../data'
file_dir = './out'
file_list = [
['herg25oc1'],
['herg27oc1'],
['herg30oc1'],
['herg33oc1'],
['herg37oc3'],
]
temperatures = np.array([25.0, 27.0, 30.0, 33.0, 37.0])
temperatures += 273.15 # in K
fit_seed = '542811797'
withfcap = False
#
# Load up all selected cells
#
for i_temperature, (file_names, temperature) in enumerate(zip(file_list,
temperatures)):
RANK = {}
for file_name in file_names:
# Get selected cells
files_dir = os.path.realpath(os.path.join(file_dir, file_name))
searchwfcap = '-fcap' if withfcap else ''
selectedfile = './manualselection/manualv2selected-%s.txt' % (file_name)
selectedwell = []
with open(selectedfile, 'r') as f:
for l in f:
if not l.startswith('#'):
selectedwell.append(l.split()[0])
print(file_name + ' selected ' + str(len(selectedwell)) + ' cells')
# Model
protocol_def = protocol_funcs[protocol]
if type(protocol_def) is str:
protocol_def = '%s/%s' % (protocol_dir, protocol_def)
model = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=temperature, # K
transform=None,
useFilterCap=False) # ignore capacitive spike
for cell in selectedwell:
# Fitted parameters
param_file = '%s/%s-staircaseramp-%s-solution%s-%s.txt' % \
(files_dir, file_name, cell, searchwfcap, fit_seed)
obtained_parameters = np.loadtxt(param_file)
# Data
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
protocol, cell), delimiter=',', skiprows=1)
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir, file_name,
protocol), delimiter=',', skiprows=1)
assert(data.shape == times.shape)
# Simulation
simulation = model.simulate(obtained_parameters, times)
if False:
for _ in range(5):
assert(all(simulation ==
model.simulate(obtained_parameters, times)))
voltage = model.voltage(times)
norm = np.max(simulation) if isNorm else 1.
idx = (np.abs(times - 1.1)).argmin()
idx_r = 100 # dt=0.2ms -> 20 ms
rank_value = np.mean(simulation[idx - idx_r:idx + idx_r]) / norm
RANK[file_name + cell] = rank_value
#
# Rank and output
#
RANKED_CELLS = [key for key, value in sorted(RANK.iteritems(), \
key=lambda (k,v): (v,k))]
with open('./manualselection/paper-rank-%s.txt' % file_names[0][:-1],
'w') as f:
f.write('# experiment-id + cell-id, ordered using %s\n' % __file__)
for c in RANKED_CELLS:
f.write(c + '\n')
'''
# Can use the following for colouring
import seaborn as sns
# color_list = sns.cubehelix_palette(len(SORTED_CELLS))
color_list = sns.color_palette('Blues', n_colors=len(SORTED_CELLS))
color_list.as_hex()
'''
print('Done')