-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplot-rmsd-hist.py
393 lines (352 loc) · 13.5 KB
/
plot-rmsd-hist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python2
# coding: utf-8
#
# Plot RMSD histograms for CMA-ES fittings
#
from __future__ import print_function
import sys
sys.path.append('../lib')
import os
import numpy as np
import matplotlib
if not '--show' in sys.argv:
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import protocols
import model_ikr as m
from releakcorrect import I_releak, score_leak, protocol_leak_check
from scipy.optimize import fmin
# Predefine stuffs
debug = True
def rmsd(t1, t2):
# Normalised RMSD value between trace 1 ``t1`` and trace 2 ``t2``
#
# Note, usually normalise to data, so
# - ``t2`` data (or anything as reference)
# - ``t1`` simulation (or anything for comparison)
return np.sqrt(np.mean((t1 - t2) ** 2)) / np.sqrt(np.mean(t2 ** 2))
#
# Protocols
#
protocol_funcs = {
'staircaseramp': protocols.leak_staircase,
'pharma': protocols.pharma, # during drug application
'apab': 'protocol-apab.csv',
'apabv3': 'protocol-apabv3.csv',
'ap05hz': 'protocol-ap05hz.csv',
'ap1hz': 'protocol-ap1hz.csv',
'ap2hz': 'protocol-ap2hz.csv',
'sactiv': protocols.sactiv,
'sinactiv': protocols.sinactiv,
}
protocol_dir = '../protocol-time-series'
protocol_list = [
'staircaseramp',
'pharma',
'apab',
'apabv3',
'ap05hz',
'ap1hz',
'ap2hz',
'sactiv',
'sinactiv',
]
prt_names = ['Staircase', 'pharma', 'EAD', 'DAD', 'AP05Hz', 'AP1Hz', 'AP2Hz', 'actIV', 'inactIV']
# IV protocol special treatment
protocol_iv = [
'sactiv',
'sinactiv',
]
protocol_iv_times = {
'sactiv': protocols.sactiv_times,
'sinactiv': protocols.sinactiv_times,
}
protocol_iv_convert = {
'sactiv': protocols.sactiv_convert,
'sinactiv': protocols.sinactiv_convert,
}
protocol_iv_args = {
'sactiv': protocols.sactiv_iv_arg,
'sinactiv': protocols.sinactiv_iv_arg,
}
protocol_iv_v = {
'sactiv': protocols.sactiv_v,
'sinactiv': protocols.sinactiv_v,
}
data_dir = '../data-autoLC'
data_dir_staircase = '../data'
file_dir = './out'
file_list = [
'herg25oc1',
'herg27oc1',
'herg30oc1',
'herg33oc1',
'herg37oc3',
]
temperatures = np.array([25.0, 27.0, 30.0, 33.0, 37.0])
temperatures += 273.15 # in K
fit_seed = '542811797'
withfcap = False
#
# Get new parameters and traces
#
for i_temperature, (file_name, temperature) in enumerate(zip(file_list,
temperatures)):
# Set seed
np.random.seed(101)
BIG_MATRIX = []
savepath = './figs/rmsd-hist-%s-autoLC-releak' % file_name
if not os.path.isdir(savepath):
os.makedirs(savepath)
logfile = savepath + '/rmsd-values.txt'
with open(logfile, 'w') as f:
f.write('Start logging...\n')
print('Reading %s' % file_name)
with open(logfile, 'a') as f:
f.write(file_name + '...\n')
# Get selected cells
files_dir = os.path.realpath(os.path.join(file_dir, file_name))
searchwfcap = '-fcap' if withfcap else ''
selectedfile = './manualselection/manualv2selected-%s.txt' % (file_name)
selectedwell = []
with open(selectedfile, 'r') as f:
for l in f:
if not l.startswith('#'):
selectedwell.append(l.split()[0])
for prt in protocol_list:
with open(logfile, 'a') as f:
f.write('%s...\n' % prt)
# Model
protocol_def = protocol_funcs[prt]
if type(protocol_def) is str:
protocol_def = '%s/%s' % (protocol_dir, protocol_def)
model = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=temperature, # K
transform=None,
useFilterCap=False) # ignore capacitive spike
# Time points
if prt == 'staircaseramp':
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir_staircase,
file_name, prt), delimiter=',', skiprows=1)
else:
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir, file_name,
prt), delimiter=',', skiprows=1)
# Voltage protocol
if prt not in protocol_iv:
times_sim = np.copy(times)
voltage = model.voltage(times)
else:
times_sim = protocol_iv_times[prt](times[1] - times[0])
voltage = model.voltage(times_sim) * 1000
voltage, t = protocol_iv_convert[prt](voltage, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
# Initialisation
i = 0
RMSD = []
outvalues = []
RMSD_cells = []
VALUES = []
SIMS = []
for cell in selectedwell:
# Fitted parameters
param_file = '%s/%s-staircaseramp-%s-solution%s-%s.txt' % \
(files_dir, file_name, cell, searchwfcap, fit_seed)
obtained_parameters = np.loadtxt(param_file)
# Data
if prt == 'staircaseramp':
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir_staircase,
file_name, prt, cell), delimiter=',', skiprows=1)
elif prt not in protocol_iv:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
# Re-leak correct the leak corrected data...
g_releak = fmin(score_leak, [0.0], args=(data, voltage, times,
protocol_leak_check[prt]), disp=False)
data = I_releak(g_releak[0], data, voltage)
else:
data = np.loadtxt('%s/%s-%s-%s.csv' % (data_dir, file_name,
prt, cell), delimiter=',', skiprows=1)
for i in range(data.shape[1]):
g_releak = fmin(score_leak, [0.0], args=(data[:, i],
voltage[:, i], times,
protocol_leak_check[prt]), disp=False)
data[:, i] = I_releak(g_releak[0], data[:, i], voltage[:, i])
assert(len(data) == len(times))
# Simulation
simulation = model.simulate(obtained_parameters, times_sim)
if False:
for _ in range(5):
assert(all(simulation ==
model.simulate(obtained_parameters, times_sim)))
if prt in protocol_iv:
simulation, t = protocol_iv_convert[prt](simulation, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
# simulation
iv_i_s = protocols.get_corrected_iv(simulation, times,
*protocol_iv_args[prt]())
# recording
iv_i_d = protocols.get_corrected_iv(data, times,
*protocol_iv_args[prt]())
# normalise and replace 'simulation', 'data', and 'times'
simulation = iv_i_s / np.max(iv_i_s)
data = iv_i_d / np.max(iv_i_d)
if prt == 'sinactiv':
iv_v = iv_v[2:]
simulation = simulation[2:]
data = data[2:]
RMSD.append(rmsd(simulation, data))
RMSD_cells.append((file_name, cell))
VALUES.append(data)
SIMS.append(simulation)
if i == 0 and debug:
if prt not in protocol_iv:
plot_x = np.copy(times)
plt.xlabel('Time')
else:
plot_x = np.copy(iv_v)
plt.xlabel('Voltage')
plt.plot(plot_x, data)
plt.plot(plot_x, simulation)
plt.ylabel('Current')
print('Debug rmsd: ' + str(rmsd(simulation, data)))
plt.savefig('%s/rmsd-hist-%s-debug.png' % (savepath, prt))
plt.close('all')
i += 1
BIG_MATRIX.append(RMSD)
best_cell = np.argmin(RMSD)
worst_cell = np.argmax(RMSD)
median_cell = np.argsort(RMSD)[len(RMSD)//2]
p75_cell = np.argsort(RMSD)[int(len(RMSD)*0.75)]
p90_cell = np.argsort(RMSD)[int(len(RMSD)*0.9)]
to_plot = {
'best': best_cell,
'worst': worst_cell,
'median': median_cell,
'75percent': p75_cell,
'90percent': p90_cell,
}
#
# Plot
#
# Plot histograms
fig, axes = plt.subplots(1, 1, figsize=(6, 4))
axes.hist(RMSD, 20)
axes.set_ylabel('Frequency (N=%s)' % len(selectedwell))
axes.set_xlabel(r'RMSE / RMSD$_0$')
if '--show' in sys.argv:
plt.show()
else:
plt.savefig('%s/rmsd-hist-%s.png' % (savepath, prt))
plt.close('all')
# Plot extreme cases
for n, i in to_plot.iteritems():
ID, CELL = RMSD_cells[i][0], RMSD_cells[i][1]
values = VALUES[i]
sim = SIMS[i]
if prt not in protocol_iv:
plot_x = np.copy(times)
plt.xlabel('Time')
else:
plot_x = np.copy(iv_v)
plt.xlabel('Voltage')
plt.plot(plot_x, values)
plt.plot(plot_x, sim)
plt.ylabel('Current')
plt.savefig('%s/rmsd-hist-%s-plot-%s.png'% (savepath, prt, n))
plt.close('all')
print('%s %s %s rmsd: '%(n, ID, CELL) + str(rmsd(sim, values)))
with open(logfile, 'a') as f:
f.write('%s %s %s rmsd: '%(n, ID, CELL)\
+ str(rmsd(sim, values)) + '\n')
# Plot all in sorted RMSD order
rmsd_argsort = np.argsort(RMSD)
with open(logfile, 'a') as f:
f.write('---\n')
savedir = '%s/rmsd-hist-%s-plots' % (savepath, prt)
if not os.path.isdir(savedir):
os.makedirs(savedir)
for ii, i in enumerate(rmsd_argsort):
ID, CELL = RMSD_cells[i][0], RMSD_cells[i][1]
values = VALUES[i]
sim = SIMS[i]
if prt not in protocol_iv:
plot_x = np.copy(times)
plt.xlabel('Time')
else:
plot_x = np.copy(iv_v)
plt.xlabel('Voltage')
plt.plot(plot_x, values)
plt.plot(plot_x, sim)
plt.ylabel('Current')
plt.savefig('%s/rank_%s-%s-%s.png'%(savedir, str(ii).zfill(3), ID,\
CELL))
plt.close('all')
with open(logfile, 'a') as f:
f.write('rank %s %s %s rmsd: ' % (str(ii).zfill(2), ID, CELL)\
+ str(rmsd(sim, values)) + '\n')
with open(logfile, 'a') as f:
f.write('---\n')
#
# Play around with the big matrix
#
BIG_MATRIX = np.array(BIG_MATRIX)
# sorted by 'best fit'
sorted_as = BIG_MATRIX[0, :].argsort()
# apply sort
RMSD_cells = [RMSD_cells[i][0]+'-'+RMSD_cells[i][1] for i in sorted_as]
BIG_MATRIX = BIG_MATRIX[:, sorted_as]
# maybe just color by rank; scipy.stats.rankdata()
fig, ax = plt.subplots(figsize=(10, 100))
# vmin, vmax here is a bit arbitrary...
vmin = 0
vmax = 2
im = ax.matshow(BIG_MATRIX.T, cmap=plt.cm.Blues, vmin=vmin, vmax=vmax)
# .T is needed for the ordering i,j below!
# do some tricks with the colorbar
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = plt.colorbar(im, cax=cax, ticks=np.arange(vmin, vmax))
# change the current axis back to ax
plt.sca(ax)
for i in range(BIG_MATRIX.shape[0]):
for j in range(BIG_MATRIX.shape[1]):
c = BIG_MATRIX[i, j]
ax.text(i, j, '%.2f'%c, va='center', ha='center')
plt.yticks(np.arange(BIG_MATRIX.shape[1]), RMSD_cells)
plt.xticks(np.arange(BIG_MATRIX.shape[0]), prt_names)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.savefig('%s/rmsd-matrix.png' % savepath, bbox_inch='tight')
plt.close('all')
#
# Save matrix
#
np.savetxt('%s/rmsd-matrix.txt' % savepath, BIG_MATRIX.T,
header=' '.join(protocol_list))
with open('%s/rmsd-matrix-cells.txt' % savepath, 'w') as f:
for c in RMSD_cells:
f.write(c + '\n')
#
# Gary's plotmatrix type plot
#
fig, axes = plt.subplots(BIG_MATRIX.shape[0], BIG_MATRIX.shape[0],
figsize=(12, 12))
for i in range(BIG_MATRIX.shape[0]):
for j in range(BIG_MATRIX.shape[0]):
if i == j:
# Do nothing
axes[i,j ].set_xticks([])
axes[i,j ].set_yticks([])
elif i < j:
axes[i, j].set_visible(False)
elif i > j:
axes[i, j].scatter(BIG_MATRIX[j], BIG_MATRIX[i])
if j == 0:
axes[i, j].set_ylabel(prt_names[i])
if i == len(prt_names) - 1:
axes[i, j].set_xlabel(prt_names[j])
# plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.savefig('%s/rmsd-gary-matrix.png' % savepath, bbox_inch='tight')
plt.close('all')