-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathquick-plots-mean.py
257 lines (226 loc) · 8.34 KB
/
quick-plots-mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python2
from __future__ import print_function
import sys
sys.path.append('../lib')
import os
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import protocols
import model_ikr as m
# Set parameter transformation
import parametertransform
transform_to_model_param = parametertransform.log_transform_to_model_param
transform_from_model_param = parametertransform.log_transform_from_model_param
savedir = './figs/quick-plots-mean'
if not os.path.isdir(savedir):
os.makedirs(savedir)
data_dir_staircase = data_dir = '../data'
file_dir = './out'
file_list = [
'herg25oc1',
'herg27oc1',
'herg30oc1',
'herg33oc1',
'herg37oc3',
]
temperatures = np.array([25.0, 27.0, 30.0, 33.0, 37.0])
temperatures += 273.15 # in K
fit_seed = 542811797
#
# Protocol info
#
protocol_funcs = {
'staircaseramp': protocols.leak_staircase,
'pharma': protocols.pharma, # during drug application
'apab': 'protocol-apab.csv',
'apabv3': 'protocol-apabv3.csv',
'ap05hz': 'protocol-ap05hz.csv',
'ap1hz': 'protocol-ap1hz.csv',
'ap2hz': 'protocol-ap2hz.csv',
'sactiv': protocols.sactiv,
'sinactiv': protocols.sinactiv,
}
protocol_dir = '../protocol-time-series'
protocol_list = [
'staircaseramp',
'sactiv',
'sinactiv',
'pharma',
'apab',
'apabv3',
'ap05hz',
'ap1hz',
'ap2hz',
]
prt_ylim = [
(-1500, 2250),
(-0.025, 1.025),
(-3.25, 1.025),
(-250, 2250),
(-250, 2250),
(-250, 2250),
(-250, 2250),
(-250, 2250),
(-250, 2250),
]
prt_ylim = [
(-0.02, 0.04),
(-0.025, 1.025),
(-3.25, 1.025),
(-0.005, 0.04),
(-0.005, 0.04),
(-0.005, 0.04),
(-0.005, 0.04),
(-0.005, 0.04),
(-0.005, 0.04),
]
# IV protocol special treatment
protocol_iv = [
'sactiv',
'sinactiv',
]
protocol_iv_times = {
'sactiv': protocols.sactiv_times,
'sinactiv': protocols.sinactiv_times,
}
protocol_iv_convert = {
'sactiv': protocols.sactiv_convert,
'sinactiv': protocols.sinactiv_convert,
}
protocol_iv_args = {
'sactiv': protocols.sactiv_iv_arg,
'sinactiv': protocols.sinactiv_iv_arg,
}
protocol_iv_v = {
'sactiv': protocols.sactiv_v,
'sinactiv': protocols.sinactiv_v,
}
# Load pseudo2hbm
mean_chains = []
for i_temperature, (file_name, temperature) in enumerate(zip(file_list,
temperatures)):
load_file = './out-mcmc/%s-pseudo2hbm-lognorm-mean.txt' % (file_name[:-1])
mean_chain = np.loadtxt(load_file) # transformed
mean_chains.append(mean_chain)
mean_chains = np.asarray(mean_chains)
# Eyring and Q10
from temperature_models import eyringA, eyringB, eyringG, eyringT
from temperature_models import q10A, q10B, q10G, q10T
from temperature_models import eyring_transform_to_model_param
eyring_mean = np.loadtxt('%s/eyring-mean.txt' % file_dir)
q10_mean = np.loadtxt('%s/q10-mean.txt' % file_dir)
# Model
prt2model = {}
for prt in protocol_list:
protocol_def = protocol_funcs[prt]
if type(protocol_def) is str:
protocol_def = '%s/%s' % (protocol_dir, protocol_def)
prt2model[prt] = m.Model('../mmt-model-files/kylie-2017-IKr.mmt',
protocol_def=protocol_def,
temperature=temperatures[0], # K
transform=None,
useFilterCap=False) # ignore capacitive spike
# Plot
for i_prt, prt in enumerate(protocol_list):
fig, axes = plt.subplots(2, len(temperatures), figsize=(16, 6))
print('Plotting', prt)
# Time point
if prt not in protocol_iv:
times = np.loadtxt('%s/%s-%s-times.csv' % (data_dir, 'herg25oc1',
prt), delimiter=',', skiprows=1)
else:
times = np.loadtxt('%s/%s-%s-times.csv' % ('../data-autoLC',
'herg25oc1', prt), delimiter=',', skiprows=1)
# Protocol
model = prt2model[prt]
if prt not in protocol_iv:
times_sim = np.copy(times)[::5]
voltage = model.voltage(times) * 1000
else:
times_sim = protocol_iv_times[prt](times[1] - times[0])
voltage = model.voltage(times_sim) * 1000
voltage, t = protocol_iv_convert[prt](voltage, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
# Temperatures
for i_T, T in enumerate(temperatures):
axes[0, i_T].set_title(r'T = %s$^o$C' % (T - 273.15))
if prt not in protocol_iv:
axes[0, i_T].plot(times, voltage, c='#7f7f7f')
else:
for i in range(voltage.shape[1]):
axes[0, i_T].plot(times, voltage[:, i], c='#696969')
# HBM mean parameters
hbm_T_mean = transform_to_model_param(
np.mean(mean_chains[i_T], axis=0))
# Eyring parameters
eyring_T_mean = eyringT(eyring_mean, T)
eyring_model_param = eyring_transform_to_model_param(eyring_T_mean, T)
# Q10 parameters
q10_T_mean = q10T(q10_mean, T)
q10_model_param = eyring_transform_to_model_param(q10_T_mean, T)
if i_T == 4 or i_T == 0:
print('temperature', T - 273.15)
print('HBM: ', hbm_T_mean)
print('Eyring: ', eyring_model_param)
print('RMSD Eyring: ',
np.sqrt(np.mean(
(hbm_T_mean[1:] - eyring_model_param[1:]) ** 2)))
print('Q10: ', q10_model_param)
print('RMSD Q10: ',
np.sqrt(np.mean(
(hbm_T_mean[1:] - q10_model_param[1:]) ** 2)))
# Mean individual cells fit
simulation = model.simulate(hbm_T_mean, times_sim)
if prt in protocol_iv:
simulation, t = protocol_iv_convert[prt](simulation, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
iv_i = protocols.get_corrected_iv(simulation, times,
*protocol_iv_args[prt]())
axes[1, i_T].plot(iv_v, iv_i / np.max(iv_i), lw=1.5, alpha=1,
c='C1', zorder=1, label='HBM mean')
else:
axes[1, i_T].plot(times_sim, simulation / hbm_T_mean[0], alpha=1,
lw=1.5, c='C1', zorder=1, label='HBM mean')
# Eyring
eyring_sim = model.simulate(eyring_model_param, times_sim)
if prt in protocol_iv:
eyring_sim, t = protocol_iv_convert[prt](eyring_sim, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
iv_i = protocols.get_corrected_iv(eyring_sim, times,
*protocol_iv_args[prt]())
axes[1, i_T].plot(iv_v, iv_i / np.max(iv_i), lw=1.5, alpha=1,
c='C2', zorder=2, label='Eyring')
else:
axes[1, i_T].plot(times_sim,
eyring_sim / eyring_model_param[0],
alpha=1, lw=1.5, c='C2', zorder=2,
label='Eyring')
# Q10
q10_sim = model.simulate(q10_model_param, times_sim)
if prt in protocol_iv:
q10_sim, t = protocol_iv_convert[prt](q10_sim, times_sim)
assert(np.mean(np.abs(t - times)) < 1e-8)
iv_v = protocol_iv_v[prt]() * 1000 # mV
iv_i = protocols.get_corrected_iv(q10_sim, times,
*protocol_iv_args[prt]())
axes[1, i_T].plot(iv_v, iv_i / np.max(iv_i), lw=1.5, alpha=1,
c='C3', zorder=3, label='Q10')
axes[1, i_T].grid()
else:
axes[1, i_T].plot(times_sim,
q10_sim / q10_model_param[0],
alpha=1, lw=1.5, c='C3', zorder=3, label='Q10')
axes[1, i_T].set_ylim(prt_ylim[i_prt])
# Save fig
axes[1, 0].legend()
axes[1, 2].set_xlabel('Time [s]')
axes[0, 0].set_ylabel('Voltage [mV]')
axes[1, 0].set_ylabel('Current [pA]')
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.savefig('%s/%s.png' % (savedir, prt),
bbox_iches='tight')
plt.close('all')