We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Otherwise use 2 exponentials
pcpostprocess/pcpostprocess/scripts/run_herg_qc.py
Line 1019 in 23a7048
import argparse import importlib.util import logging import multiprocessing import matplotlib import os import string import sys import scipy import cycler import matplotlib.pyplot as plt import numpy as np import pandas as pd import regex as re import json import datetime import subprocess import syncropatch_export from pcpostprocess.hergQC import hERGQC from pcpostprocess.infer_reversal import infer_reversal_potential from pcpostprocess.subtraction_plots import setup_subtraction_grid, do_subtraction_plot from pcpostprocess.leak_correct import fit_linear_leak, get_leak_corrected from syncropatch_export.trace import Trace from syncropatch_export.voltage_protocols import VoltageProtocol matplotlib.use('Agg') plt.rcParams["axes.formatter.use_mathtext"] = True pool_kws = {'maxtasksperchild': 1} matplotlib.rc('font', size='9') color_cycle = ["#5790fc", "#f89c20", "#e42536", "#964a8b", "#9c9ca1", "#7a21dd"] plt.rcParams['axes.prop_cycle'] = cycler.cycler('color', color_cycle) all_wells = [row + str(i).zfill(2) for row in string.ascii_uppercase[:16] for i in range(1, 25)] def get_git_revision_hash() -> str: return subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode('ascii').strip() def main(): parser = argparse.ArgumentParser() parser.add_argument('data_directory') parser.add_argument('-c', '--no_cpus', default=1, type=int) parser.add_argument('--output_dir') parser.add_argument('-w', '--wells', nargs='+') parser.add_argument('--protocols', nargs='+') parser.add_argument('--reversal_spread_threshold', type=float, default=10) parser.add_argument('--export_failed', action='store_true') parser.add_argument('--selection_file') parser.add_argument('--subtracted_only', action='store_true') parser.add_argument('--figsize', nargs=2, type=int, default=[5, 8]) parser.add_argument('--debug', action='store_true') parser.add_argument('--log_level', default='INFO') parser.add_argument('--Erev', default=-90.71, type=float) args = parser.parse_args() logging.basicConfig(level=args.log_level) if args.output_dir is None: args.output_dir = os.path.join('output', 'hergqc') if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) with open(os.path.join(args.output_dir, 'info.txt'), 'w') as description_fout: git_hash = get_git_revision_hash() datetimestr = str(datetime.datetime.now()) description_fout.write(f"Date: {datetimestr}\n") description_fout.write(f"Commit {git_hash}\n") command = " ".join(sys.argv) description_fout.write(f"Command: {command}\n") spec = importlib.util.spec_from_file_location( 'export_config', os.path.join(args.data_directory, 'export_config.py')) if args.wells is None: args.wells = all_wells wells = args.wells else: wells = args.wells # Import and exec config file global export_config export_config = importlib.util.module_from_spec(spec) sys.modules['export_config'] = export_config spec.loader.exec_module(export_config) export_config.savedir = args.output_dir args.saveID = export_config.saveID args.savedir = export_config.savedir args.D2S = export_config.D2S args.D2SQC = export_config.D2S_QC protocols_regex = \ r'^([a-z|A-Z|_|0-9| |\-|\(|\)]+)_([0-9][0-9]\.[0-9][0-9]\.[0-9][0-9])$' protocols_regex = re.compile(protocols_regex) res_dict = {} for dirname in os.listdir(args.data_directory): dirname = os.path.basename(dirname) match = protocols_regex.match(dirname) if match is None: continue protocol_name = match.group(1) if protocol_name not in export_config.D2S\ and protocol_name not in export_config.D2S_QC: continue # map name to new name using export_config # savename = export_config.D2S[protocol_name] time = match.group(2) if protocol_name not in res_dict: res_dict[protocol_name] = [] res_dict[protocol_name].append(time) readnames, savenames, times_list = [], [], [] combined_dict = {**export_config.D2S, **export_config.D2S_QC} # Select QC protocols and times for protocol in res_dict: if protocol not in export_config.D2S_QC: continue times = sorted(res_dict[protocol]) savename = export_config.D2S_QC[protocol] if len(times) == 2: savenames.append(savename) readnames.append(protocol) times_list.append(times) elif len(times) == 4: savenames.append(savename) readnames.append(protocol) times_list.append([times[0], times[2]]) # Make seperate savename for protocol repeat savename = combined_dict[protocol] + '_2' assert savename not in export_config.D2S.values() savenames.append(savename) times_list.append([times[1], times[3]]) readnames.append(protocol) with multiprocessing.Pool(min(args.no_cpus, len(readnames)), **pool_kws) as pool: pool_argument_list = zip(readnames, savenames, times_list, [args for i in readnames]) well_selections, qc_dfs = \ list(zip(*pool.starmap(run_qc_for_protocol, pool_argument_list))) qc_df = pd.concat(qc_dfs, ignore_index=True) # Do QC which requires both repeats # qc3.bookend check very first and very last staircases are similar protocol, savename = list(export_config.D2S_QC.items())[0] times = sorted(res_dict[protocol]) if len(times) == 4: qc3_bookend_dict = qc3_bookend(protocol, savename, times, args) else: qc3_bookend_dict = {well: True for well in qc_df.well.unique()} qc_df['qc3.bookend'] = [qc3_bookend_dict[well] for well in qc_df.well] savedir = args.output_dir saveID = export_config.saveID if not os.path.exists(os.path.join(args.output_dir, savedir)): os.makedirs(os.path.join(args.output_dir, savedir)) # qc_df will be updated and saved again, but it's useful to save them here for debugging # Write qc_df to file qc_df.to_csv(os.path.join(savedir, 'QC-%s.csv' % saveID)) # Write data to JSON file qc_df.to_json(os.path.join(savedir, 'QC-%s.json' % saveID), orient='records') # Overwrite old files for protocol in list(export_config.D2S_QC.values()): fname = os.path.join(savedir, 'selected-%s-%s.txt' % (saveID, protocol)) with open(fname, 'w') as fout: pass overall_selection = [] for well in qc_df.well.unique(): failed = False for well_selection, protocol in zip(well_selections, list(savenames)): logging.debug(f"{well_selection} selected from protocol {protocol}") fname = os.path.join(savedir, 'selected-%s-%s.txt' % (saveID, protocol)) if well not in well_selection: failed = True else: with open(fname, 'a') as fout: fout.write(well) fout.write('\n') # well in every selection if not failed: overall_selection.append(well) selectedfile = os.path.join(savedir, 'selected-%s.txt' % saveID) with open(selectedfile, 'w') as fout: for well in overall_selection: fout.write(well) fout.write('\n') logfile = os.path.join(savedir, 'table-%s.txt' % saveID) with open(logfile, 'a') as f: f.write('\\end{table}\n') # Export all protocols savenames, readnames, times_list = [], [], [] for protocol in res_dict: if args.protocols: if savename not in args.protocols: continue # Sort into chronological order times = sorted(res_dict[protocol]) savename = combined_dict[protocol] readnames.append(protocol) if len(times) == 2: savenames.append(savename) times_list.append(times) elif len(times) == 4: savenames.append(savename) times_list.append(times[::2]) # Make seperate savename for protocol repeat savename = combined_dict[protocol] + '_2' assert savename not in combined_dict.values() savenames.append(savename) times_list.append(times[1::2]) readnames.append(protocol) wells_to_export = wells if args.export_failed else overall_selection logging.info(f"exporting wells {wells}") no_protocols = len(res_dict) args_list = list(zip(readnames, savenames, times_list, [wells_to_export] * len(savenames), [args for i in readnames])) with multiprocessing.Pool(min(args.no_cpus, no_protocols), **pool_kws) as pool: dfs = list(pool.starmap(extract_protocol, args_list)) extract_df = pd.concat(dfs, ignore_index=True) extract_df['selected'] = extract_df['well'].isin(overall_selection) logging.info(f"extract_df: {extract_df}") qc_erev_spread = {} erev_spreads = {} passed_qc_dict = {} for well in extract_df.well.unique(): logging.info(f"Checking QC for well {well}") # Select only this well sub_df = extract_df[extract_df.well == well] sub_qc_df = qc_df[qc_df.well == well] passed_qc3_bookend = np.all(sub_qc_df['qc3.bookend'].values) logging.info(f"passed_QC3_bookend_all {passed_qc3_bookend}") passed_QC_Erev_all = np.all(sub_df['QC.Erev'].values) passed_QC1_all = np.all(sub_df.QC1.values) logging.info(f"passed_QC1_all {passed_QC1_all}") passed_QC4_all = np.all(sub_df.QC4.values) logging.info(f"passed_QC4_all {passed_QC4_all}") passed_QC6_all = np.all(sub_df.QC6.values) logging.info(f"passed_QC6_all {passed_QC1_all}") E_revs = sub_df['E_rev'].values.flatten().astype(np.float64) E_rev_spread = E_revs.max() - E_revs.min() # QC Erev spread: check spread in reversal potential isn't too large passed_QC_Erev_spread = E_rev_spread <= args.reversal_spread_threshold logging.info(f"passed_QC_Erev_spread {passed_QC_Erev_spread}") qc_erev_spread[well] = passed_QC_Erev_spread erev_spreads[well] = E_rev_spread passed_QC_Erev_all = np.all(sub_df['QC.Erev'].values) logging.info(f"passed_QC_Erev_all {passed_QC_Erev_all}") was_selected = np.all(sub_df['selected'].values) passed_qc = passed_qc3_bookend and was_selected\ and passed_QC_Erev_all and passed_QC6_all\ and passed_QC_Erev_spread and passed_QC1_all\ and passed_QC4_all passed_qc_dict[well] = passed_qc extract_df['passed QC'] = [passed_qc_dict[well] for well in extract_df.well] extract_df['QC.Erev.spread'] = [qc_erev_spread[well] for well in extract_df.well] extract_df['Erev_spread'] = [erev_spreads[well] for well in extract_df.well] chrono_dict = {times[0]: prot for prot, times in zip(savenames, times_list)} with open(os.path.join(args.output_dir, 'chrono.txt'), 'w') as fout: for key in sorted(chrono_dict): val = chrono_dict[key] # Output order of protocols fout.write(val) fout.write('\n') # Update qc_df update_cols = [] for index, vals in qc_df.iterrows(): append_dict = {} well = vals['well'] sub_df = extract_df[(extract_df.well == well)] append_dict['QC.Erev.all_protocols'] =\ np.all(sub_df['QC.Erev']) append_dict['QC.Erev.spread'] =\ np.all(sub_df['QC.Erev.spread']) append_dict['QC1.all_protocols'] =\ np.all(sub_df['QC1']) append_dict['QC4.all_protocols'] =\ np.all(sub_df['QC4']) append_dict['QC6.all_protocols'] =\ np.all(sub_df['QC6']) update_cols.append(append_dict) for key in append_dict: qc_df[key] = [row[key] for row in update_cols] qc_styled_df = create_qc_table(qc_df) logging.info(qc_styled_df) qc_styled_df.to_excel(os.path.join(args.output_dir, 'qc_table.xlsx')) qc_styled_df.to_latex(os.path.join(args.output_dir, 'qc_table.tex')) # Save in csv format qc_df.to_csv(os.path.join(savedir, 'QC-%s.csv' % saveID)) # Write data to JSON file qc_df.to_json(os.path.join(savedir, 'QC-%s.json' % saveID), orient='records') # Load only QC vals. TODO use a new variabile name to avoid confusion qc_vals_df = extract_df[['well', 'sweep', 'protocol', 'Rseal', 'Cm', 'Rseries']].copy() qc_vals_df['drug'] = 'before' qc_vals_df.to_csv(os.path.join(args.output_dir, 'qc_vals_df.csv')) extract_df.to_csv(os.path.join(args.output_dir, 'subtraction_qc.csv')) with open(os.path.join(args.output_dir, 'passed_wells.txt'), 'w') as fout: for well, passed in passed_qc_dict.items(): if passed: fout.write(well) fout.write('\n') def create_qc_table(qc_df): if len(qc_df.index) == 0: return None if 'Unnamed: 0' in qc_df: qc_df = qc_df.drop('Unnamed: 0', axis='columns') qc_criteria = list(qc_df.drop(['protocol', 'well'], axis='columns').columns) def agg_func(x): x = x.values.flatten().astype(bool) return bool(np.all(x)) qc_df[qc_criteria] = qc_df[qc_criteria].astype(bool) qc_df['protocol'] = ['staircaseramp1_2' if p == 'staircaseramp2' else p for p in qc_df.protocol] print(qc_df.protocol.unique()) fails_dict = {} no_wells = 384 dfs = [] protocol_headings = ['staircaseramp1', 'staircaseramp1_2', 'all'] for protocol in protocol_headings: fails_dict = {} for crit in sorted(qc_criteria) + ['all']: if protocol != 'all': sub_df = qc_df[qc_df.protocol == protocol].copy() else: sub_df = qc_df.copy() agg_dict = {crit: agg_func for crit in qc_criteria} if crit != 'all': col = sub_df.groupby('well').agg(agg_dict).reset_index()[crit] vals = col.values.flatten() n_passed = vals.sum() else: excluded = [crit for crit in qc_criteria if 'all' in crit or 'spread' in crit or 'bookend' in crit] if protocol == 'all': excluded = [] crit_included = [crit for crit in qc_criteria if crit not in excluded] col = sub_df.groupby('well').agg(agg_dict).reset_index() n_passed = np.sum(np.all(col[crit_included].values, axis=1).flatten()) crit = re.sub('_', r'\_', crit) fails_dict[crit] = (crit, no_wells - n_passed) new_df = pd.DataFrame.from_dict(fails_dict, orient='index', columns=['crit', 'wells failing']) new_df['protocol'] = protocol new_df.set_index('crit') dfs.append(new_df) ret_df = pd.concat(dfs, ignore_index=True) ret_df['wells failing'] = ret_df['wells failing'].astype(int) ret_df['protocol'] = pd.Categorical(ret_df['protocol'], categories=protocol_headings, ordered=True) return ret_df def extract_protocol(readname, savename, time_strs, selected_wells, args): logging.info(f"extracting {savename}") savedir = args.output_dir saveID = args.saveID traces_dir = os.path.join(savedir, 'traces') if not os.path.exists(traces_dir): try: os.makedirs(traces_dir) except FileExistsError: pass row_dict = {} subtraction_plots_dir = os.path.join(savedir, 'subtraction_plots') if not os.path.isdir(subtraction_plots_dir): try: os.makedirs(subtraction_plots_dir) except FileExistsError: pass logging.info(f"Exporting {readname} as {savename}") filepath_before = os.path.join(args.data_directory, f"{readname}_{time_strs[0]}") filepath_after = os.path.join(args.data_directory, f"{readname}_{time_strs[1]}") json_file_before = f"{readname}_{time_strs[0]}" json_file_after = f"{readname}_{time_strs[1]}" before_trace = Trace(filepath_before, json_file_before) after_trace = Trace(filepath_after, json_file_after) voltage_protocol = before_trace.get_voltage_protocol() times = before_trace.get_times() voltages = before_trace.get_voltage() # Find start of leak section desc = voltage_protocol.get_all_sections() ramp_bounds = detect_ramp_bounds(times, desc) tstart, tend = ramp_bounds nsweeps_before = before_trace.NofSweeps = 2 nsweeps_after = after_trace.NofSweeps = 2 assert nsweeps_before == nsweeps_after # Time points times_before = before_trace.get_times() times_after = after_trace.get_times() try: assert all(np.abs(times_before - times_after) < 1e-8) except Exception as exc: logging.warning(f"Exception thrown when handling {savename}: ", str(exc)) return header = "\"current\"" qc_before = before_trace.get_onboard_QC_values() qc_after = after_trace.get_onboard_QC_values() qc_vals_all = before_trace.get_onboard_QC_values() for i_well, well in enumerate(selected_wells): # Go through all wells if i_well % 24 == 0: logging.info('row ' + well[0]) if args.selection_file: if well not in selected_wells: continue if None in qc_before[well] or None in qc_after[well]: continue # Save 'before drug' trace as .csv for sweep in range(nsweeps_before): out = before_trace.get_trace_sweeps([sweep])[well][0] save_fname = os.path.join(traces_dir, f"{saveID}-{savename}-" f"{well}-before-sweep{sweep}.csv") np.savetxt(save_fname, out, delimiter=',', header=header) # Save 'after drug' trace as .csv for sweep in range(nsweeps_after): save_fname = os.path.join(traces_dir, f"{saveID}-{savename}-" f"{well}-after-sweep{sweep}.csv") out = after_trace.get_trace_sweeps([sweep])[well][0] if len(out) > 0: np.savetxt(save_fname, out, delimiter=',', comments='', header=header) voltage_before = before_trace.get_voltage() voltage_after = after_trace.get_voltage() assert len(voltage_before) == len(voltage_after) assert len(voltage_before) == len(times_before) assert len(voltage_after) == len(times_after) voltage = voltage_before voltage_df = pd.DataFrame(np.vstack((times_before.flatten(), voltage.flatten())).T, columns=['time', 'voltage']) if not os.path.exists(os.path.join(traces_dir, f"{saveID}-{savename}-voltages.csv")): voltage_df.to_csv(os.path.join(traces_dir, f"{saveID}-{savename}-voltages.csv")) np.savetxt(os.path.join(traces_dir, f"{saveID}-{savename}-times.csv"), times_before) # plot subtraction fig = plt.figure(figsize=args.figsize, layout='constrained') reversal_plot_dir = os.path.join(savedir, 'reversal_plots') rows = [] before_leak_current_dict = {} after_leak_current_dict = {} for well in selected_wells: before_current = before_trace.get_trace_sweeps()[well] after_current = after_trace.get_trace_sweeps()[well] before_leak_currents = [] after_leak_currents = [] out_dir = os.path.join(savedir, f"{saveID}-{savename}-leak_fit-before") for sweep in range(before_current.shape[0]): row_dict = { 'well': well, 'sweep': sweep, 'protocol': savename } qc_vals = qc_vals_all[well][sweep] if qc_vals is None: continue if len(qc_vals) == 0: continue row_dict['Rseal'] = qc_vals[0] row_dict['Cm'] = qc_vals[1] row_dict['Rseries'] = qc_vals[2] before_params, before_leak = fit_linear_leak(before_current[sweep, :], voltages, times, *ramp_bounds, output_dir=out_dir, save_fname=f"{well}_sweep{sweep}.png" ) before_leak_currents.append(before_leak) out_dir = os.path.join(savedir, f"{saveID}-{savename}-leak_fit-after") # Convert linear regression parameters into conductance and reversal row_dict['gleak_before'] = before_params[1] row_dict['E_leak_before'] = -before_params[0] / before_params[1] after_params, after_leak = fit_linear_leak(after_current[sweep, :], voltages, times, *ramp_bounds, save_fname=f"{well}_sweep{sweep}.png", output_dir=out_dir) after_leak_currents.append(after_leak) # Convert linear regression parameters into conductance and reversal row_dict['gleak_after'] = after_params[1] row_dict['E_leak_after'] = -after_params[0] / after_params[1] subtracted_trace = before_current[sweep, :] - before_leak\ - (after_current[sweep, :] - after_leak) out_fname = os.path.join(traces_dir, f"{saveID}-{savename}-{well}-sweep{sweep}-subtracted.csv") after_corrected = after_current[sweep, :] - after_leak before_corrected = before_current[sweep, :] - before_leak E_rev_before = infer_reversal_potential(before_corrected, times, desc, voltages, plot=True, output_path=os.path.join(reversal_plot_dir, f"{well}_{savename}_sweep{sweep}_before"), known_Erev=args.Erev) E_rev_after = infer_reversal_potential(after_corrected, times, desc, voltages, plot=True, output_path=os.path.join(reversal_plot_dir, f"{well}_{savename}_sweep{sweep}_after"), known_Erev=args.Erev) E_rev = infer_reversal_potential(subtracted_trace, times, desc, voltages, plot=True, output_path=os.path.join(reversal_plot_dir, f"{well}_{savename}_sweep{sweep}_subtracted"), known_Erev=args.Erev) row_dict['R_leftover'] =\ np.sqrt(np.sum((after_corrected)**2)/(np.sum(before_corrected**2))) row_dict['QC.R_leftover'] = row_dict['R_leftover'] < 0.5 row_dict['E_rev'] = E_rev row_dict['E_rev_before'] = E_rev_before row_dict['E_rev_after'] = E_rev_after row_dict['QC.Erev'] = E_rev < -50 and E_rev > -120 # Check QC6 for each protocol (not just the staircase) plot_dir = os.path.join(savedir, 'debug') if not os.path.exists(plot_dir): os.makedirs(plot_dir) hergqc = hERGQC(sampling_rate=before_trace.sampling_rate, plot_dir=plot_dir, n_sweeps=before_trace.NofSweeps) times = before_trace.get_times() voltage = before_trace.get_voltage() voltage_protocol = before_trace.get_voltage_protocol() voltage_steps = [tstart \ for tstart, tend, vstart, vend in voltage_protocol.get_all_sections() if vend == vstart] current = hergqc.filter_capacitive_spikes(before_corrected - after_corrected, times, voltage_steps) row_dict['QC6'] = hergqc.qc6(current, win=hergqc.qc6_win, label='0') # Assume there is only one sweep for all non-QC protocols rseal_before, cm_before, rseries_before = qc_before[well][0] rseal_after, cm_after, rseries_after = qc_after[well][0] row_dict['QC1'] = all(list(hergqc.qc1(rseal_before, cm_before, rseries_before)) + list(hergqc.qc1(rseal_after, cm_after, rseries_after))) row_dict['QC4'] = all(hergqc.qc4([rseal_before, rseal_after], [cm_before, cm_after], [rseries_before, rseries_after])) np.savetxt(out_fname, subtracted_trace.flatten()) rows.append(row_dict) param, leak = fit_linear_leak(current, voltage, times, *ramp_bounds) subtracted_trace = current - leak t_step = times[1] - times[0] row_dict['total before-drug flux'] = np.sum(current) * (1.0 / t_step) res = \ get_time_constant_of_first_decay(subtracted_trace, times, desc, args=args, output_path=os.path.join(args.output_dir, 'debug', '-120mV time constant', f"{savename}-{well}-sweep{sweep}-time-constant-fit.png")) row_dict['-120mV decay time constant 1'] = res[0][0] row_dict['-120mV decay time constant 2'] = res[0][1] row_dict['-120mV decay time constant 3'] = res[1] row_dict['-120mV peak current'] = res[2] before_leak_current_dict[well] = np.vstack(before_leak_currents) after_leak_current_dict[well] = np.vstack(after_leak_currents) extract_df = pd.DataFrame.from_dict(rows) logging.debug(extract_df) times = before_trace.get_times() voltages = before_trace.get_voltage() before_current_all = before_trace.get_trace_sweeps() after_current_all = after_trace.get_trace_sweeps() # Convert everything to nA... before_current_all = {key: value * 1e-3 for key, value in before_current_all.items()} after_current_all = {key: value * 1e-3 for key, value in after_current_all.items()} before_leak_current_dict = {key: value * 1e-3 for key, value in before_leak_current_dict.items()} after_leak_current_dict = {key: value * 1e-3 for key, value in after_leak_current_dict.items()} # TODO Put this code in a seperate function so we can easily plot individual subtractions nsweeps = before_trace.NofSweeps for well in selected_wells: before_current = before_current_all[well] after_current = after_current_all[well] before_leak_currents = before_leak_current_dict[well] after_leak_currents = after_leak_current_dict[well] nsweeps = before_current_all[well].shape[0] sub_df = extract_df[extract_df.well == well] if len(sub_df.index): continue sweeps = sorted(list(sub_df.sweep.unique())) sub_df = sub_df.set_index('sweep') logging.debug(sub_df) do_subtraction_plot(fig, times, sweeps, before_current, after_current, extract_df, voltages, well=well) fig.savefig(os.path.join(subtraction_plots_dir, f"{saveID}-{savename}-{well}-sweep{sweep}-subtraction")) fig.clf() plt.close(fig) protocol_dir = os.path.join(traces_dir, 'protocols') if not os.path.exists(protocol_dir): try: os.makedirs(protocol_dir) except FileExistsError: pass # extract protocol protocol = before_trace.get_voltage_protocol() protocol.export_txt(os.path.join(protocol_dir, f"{saveID}-{savename}.txt")) json_protocol = before_trace.get_voltage_protocol_json() with open(os.path.join(protocol_dir, f"{saveID}-{savename}.json"), 'w') as fout: json.dump(json_protocol, fout) return extract_df def run_qc_for_protocol(readname, savename, time_strs, args): df_rows = [] assert len(time_strs) == 2 filepath_before = os.path.join(args.data_directory, f"{readname}_{time_strs[0]}") json_file_before = f"{readname}_{time_strs[0]}" filepath_after = os.path.join(args.data_directory, f"{readname}_{time_strs[1]}") json_file_after = f"{readname}_{time_strs[1]}" logging.debug(f"loading {json_file_after} and {json_file_before}") before_trace = Trace(filepath_before, json_file_before) after_trace = Trace(filepath_after, json_file_after) assert before_trace.sampling_rate == after_trace.sampling_rate # Convert to s sampling_rate = before_trace.sampling_rate savedir = args.output_dir if not os.path.exists(savedir): os.makedirs(savedir) before_voltage = before_trace.get_voltage() after_voltage = after_trace.get_voltage() # Assert that protocols are exactly the same assert np.all(before_voltage == after_voltage) voltage = before_voltage sweeps = [0, 1] raw_before_all = before_trace.get_trace_sweeps(sweeps) raw_after_all = after_trace.get_trace_sweeps(sweeps) selected_wells = [] for well in args.wells: plot_dir = os.path.join(savedir, "debug", f"debug_{well}_{savename}") if not os.path.exists(plot_dir): os.makedirs(plot_dir) # Setup QC instance. We could probably just do this inside the loop hergqc = hERGQC(sampling_rate=sampling_rate, plot_dir=plot_dir, voltage=before_voltage) qc_before = before_trace.get_onboard_QC_values() qc_after = after_trace.get_onboard_QC_values() # Check if any cell first! if (None in qc_before[well][0]) or (None in qc_after[well][0]): # no_cell = True continue else: # no_cell = False pass nsweeps = before_trace.NofSweeps assert after_trace.NofSweeps == nsweeps before_currents_corrected = np.empty((nsweeps, before_trace.NofSamples)) after_currents_corrected = np.empty((nsweeps, after_trace.NofSamples)) # Get ramp times from protocol description voltage_protocol = VoltageProtocol.from_voltage_trace(voltage, before_trace.get_times()) # Find start of leak section desc = voltage_protocol.get_all_sections() ramp_locs = np.argwhere(desc[:, 2] != desc[:, 3]).flatten() tstart = desc[ramp_locs[0], 0] tend = voltage_protocol.get_ramps()[0][1] times = before_trace.get_times() ramp_bounds = [np.argmax(times > tstart), np.argmax(times > tend)] assert after_trace.NofSamples == before_trace.NofSamples for sweep in range(nsweeps): before_raw = np.array(raw_before_all[well])[sweep, :] after_raw = np.array(raw_after_all[well])[sweep, :] before_params1, before_leak = fit_linear_leak(before_raw, voltage, times, *ramp_bounds, save_fname=f"{well}-sweep{sweep}-before.png", output_dir=savedir) after_params1, after_leak = fit_linear_leak(after_raw, voltage, times, *ramp_bounds, save_fname=f"{well}-sweep{sweep}-after.png", output_dir=savedir) before_currents_corrected[sweep, :] = before_raw - before_leak after_currents_corrected[sweep, :] = after_raw - after_leak logging.info(f"{well} {savename}\n----------") logging.info(f"sampling_rate is {sampling_rate}") voltage_steps = [tstart \ for tstart, tend, vstart, vend in voltage_protocol.get_all_sections() if vend == vstart] # Run QC with leak subtracted currents selected, QC = hergqc.run_qc(voltage_steps, times, before_currents_corrected, after_currents_corrected, np.array(qc_before[well])[0, :], np.array(qc_after[well])[0, :], nsweeps) df_rows.append([well] + list(QC)) if selected: selected_wells.append(well) # Save subtracted current in csv file header = "\"current\"" for i in range(nsweeps): savepath = os.path.join(savedir, f"{args.saveID}-{savename}-{well}-sweep{i}.csv") if not os.path.exists(savedir): os.makedirs(savedir) subtracted_current = before_currents_corrected[i, :] - after_currents_corrected[i, :] np.savetxt(savepath, subtracted_current, delimiter=',', comments='', header=header) column_labels = ['well', 'qc1.rseal', 'qc1.cm', 'qc1.rseries', 'qc2.raw', 'qc2.subtracted', 'qc3.raw', 'qc3.E4031', 'qc3.subtracted', 'qc4.rseal', 'qc4.cm', 'qc4.rseries', 'qc5.staircase', 'qc5.1.staircase', 'qc6.subtracted', 'qc6.1.subtracted', 'qc6.2.subtracted'] df = pd.DataFrame(np.array(df_rows), columns=column_labels) missing_wells_dfs = [] # Add onboard qc to dataframe for well in args.wells: if well not in df['well'].values: onboard_qc_df = pd.DataFrame([[well] + [False for col in list(df)[1:]]], columns=list(df)) missing_wells_dfs.append(onboard_qc_df) df = pd.concat([df] + missing_wells_dfs, ignore_index=True) df['protocol'] = savename return selected_wells, df def qc3_bookend(readname, savename, time_strs, args): plot_dir = os.path.join(args.output_dir, args.savedir, f"{args.saveID}-{savename}-qc3-bookend") filepath_first_before = os.path.join(args.data_directory, f"{readname}_{time_strs[0]}") filepath_last_before = os.path.join(args.data_directory, f"{readname}_{time_strs[1]}") json_file_first_before = f"{readname}_{time_strs[0]}" json_file_last_before = f"{readname}_{time_strs[1]}" # Each Trace object contains two sweeps first_before_trace = Trace(filepath_first_before, json_file_first_before) last_before_trace = Trace(filepath_last_before, json_file_last_before) times = first_before_trace.get_times() voltage = first_before_trace.get_voltage() voltage_protocol = first_before_trace.get_voltage_protocol() ramp_bounds = detect_ramp_bounds(times, voltage_protocol.get_all_sections()) filepath_first_after = os.path.join(args.data_directory, f"{readname}_{time_strs[2]}") filepath_last_after = os.path.join(args.data_directory, f"{readname}_{time_strs[3]}") json_file_first_after = f"{readname}_{time_strs[2]}" json_file_last_after = f"{readname}_{time_strs[3]}" first_after_trace = Trace(filepath_first_after, json_file_first_after) last_after_trace = Trace(filepath_last_after, json_file_last_after) # Ensure that all traces use the same voltage protocol assert np.all(first_before_trace.get_voltage() == last_before_trace.get_voltage()) assert np.all(first_after_trace.get_voltage() == last_after_trace.get_voltage()) assert np.all(first_before_trace.get_voltage() == first_after_trace.get_voltage()) assert np.all(first_before_trace.get_voltage() == last_before_trace.get_voltage()) # Ensure that the same number of sweeps were used assert first_before_trace.NofSweeps == last_before_trace.NofSweeps first_before_current_dict = first_before_trace.get_trace_sweeps() first_after_current_dict = first_after_trace.get_trace_sweeps() last_before_current_dict = last_before_trace.get_trace_sweeps() last_after_current_dict = last_after_trace.get_trace_sweeps() # Do leak subtraction and store traces for each well # TODO Refactor this code into a single loop. There's no need to store each individual trace. before_traces_first = {} before_traces_last = {} after_traces_first = {} after_traces_last = {} first_processed = {} last_processed = {} # Iterate over all wells for well in np.array(all_wells).flatten(): first_before_current = first_before_current_dict[well][0, :] first_after_current = first_after_current_dict[well][0, :] last_before_current = last_before_current_dict[well][-1, :] last_after_current = last_after_current_dict[well][-1, :] before_traces_first[well] = get_leak_corrected(first_before_current, voltage, times, *ramp_bounds) before_traces_last[well] = get_leak_corrected(last_before_current, voltage, times, *ramp_bounds) after_traces_first[well] = get_leak_corrected(first_after_current, voltage, times, *ramp_bounds) after_traces_last[well] = get_leak_corrected(last_after_current, voltage, times, *ramp_bounds) # Store subtracted traces first_processed[well] = before_traces_first[well] - after_traces_first[well] last_processed[well] = before_traces_last[well] - after_traces_last[well] voltage_protocol = VoltageProtocol.from_voltage_trace(voltage, times) hergqc = hERGQC(sampling_rate=first_before_trace.sampling_rate, plot_dir=plot_dir, voltage=voltage) assert first_before_trace.NofSweeps == last_before_trace.NofSweeps voltage_steps = [tstart \ for tstart, tend, vstart, vend in voltage_protocol.get_all_sections() if vend == vstart] res_dict = {} fig = plt.figure(figsize=args.figsize) ax = fig.subplots() for well in args.wells: trace1 = hergqc.filter_capacitive_spikes( first_processed[well], times, voltage_steps ).flatten() trace2 = hergqc.filter_capacitive_spikes( last_processed[well], times, voltage_steps ).flatten() passed = hergqc.qc3(trace1, trace2) res_dict[well] = passed save_fname = os.path.join(args.output_dir, 'debug', f"debug_{well}_{savename}", 'qc3_bookend') ax.plot(times, trace1) ax.plot(times, trace2) fig.savefig(save_fname) ax.cla() plt.close(fig) return res_dict def get_time_constant_of_first_decay(trace, times, protocol_desc, args, output_path): if output_path: if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) first_120mV_step_index = [i for i, line in enumerate(protocol_desc) if line[2]==40][0] tstart, tend, vstart, vend = protocol_desc[first_120mV_step_index + 1, :] assert(vstart == vend) assert(vstart==-120.0) indices = np.argwhere((times >= tstart) & (times <= tend)) # find peak current peak_current = np.min(trace[indices]) peak_index = np.argmax(np.abs(trace[indices])) peak_time = times[indices[peak_index]][0] indices = np.argwhere((times >= peak_time) & (times <= tend - 50)) def fit_func(x, args=None): # Pass 'args=single' when we want to use a single exponential. # Otherwise use 2 exponentials if args: single = args == 'single' else: single = False if not single: a, b, c, d = x if d < b: b, d = d, b prediction = c * np.exp((-1.0/d) * (times[indices] - peak_time)) + a * np.exp((-1.0/b) * (times[indices] - peak_time)) else: a, b = x prediction = a * np.exp((-1.0/b) * (times[indices] - peak_time)) return np.sum((prediction - trace[indices])**2) bounds = [ (-np.abs(trace).max()*2, 0), (1e-12, 5e3), (-np.abs(trace).max()*2, 0), (1e-12, 5e3), ] # Repeat optimisation with different starting guesses x0s = [[np.random.uniform(lower_b, upper_b) for lower_b, upper_b in bounds] for i in range(100)] x0s = [[a, b, c, d] if d < b else [a, d, c, b] for (a, b, c, d) in x0s] best_res = None for x0 in x0s: res = scipy.optimize.minimize(fit_func, x0=x0, bounds=bounds) if best_res is None: best_res = res elif res.fun < best_res.fun and res.success and res.fun != 0: best_res = res res1 = best_res # Re-run with single exponential bounds = [ (-np.abs(trace).max()*2, 0), (1e-12, 5e3), ] # Repeat optimisation with different starting guesses x0s = [[np.random.uniform(lower_b, upper_b) for lower_b, upper_b in bounds] for i in range(100)] best_res = None for x0 in x0s: res = scipy.optimize.minimize(fit_func, x0=x0, bounds=bounds, args=('single',)) if best_res is None: best_res = res elif res.fun < best_res.fun and res.success and res.fun != 0: best_res = res res2 = best_res if not res2: logging.warning('finding 120mv decay timeconstant failed:' + str(res)) if output_path and res: fig = plt.figure(figsize=args.figsize, constrained_layout=True) axs = fig.subplots(2) for ax in axs: ax.spines[['top', 'right']].set_visible(False) ax.set_ylabel(r'$I_\mathrm{obs}$ (pA)') ax.set_xlabel(r'$t$ (ms)') protocol_ax, fit_ax = axs protocol_ax.set_title('a', fontweight='bold') fit_ax.set_title('b', fontweight='bold') fit_ax.plot(peak_time, peak_current, marker='x', color='red') a, b, c, d = res1.x if d < b: b, d = d, b e, f = res2.x fit_ax.plot(times[indices], trace[indices], color='grey', alpha=.5) fit_ax.plot(times[indices], c * np.exp((-1.0/d) * (times[indices] - peak_time))\ + a * np.exp(-(1.0/b) * (times[indices] - peak_time)), color='red', linestyle='--') res_string = r'$\tau_{1} = ' f"{d:.1f}" r'\mathrm{ms}'\ r'\; \tau_{2} = ' f"{b:.1f}" r'\mathrm{ms}$' fit_ax.annotate(res_string, xy=(0.5, 0.05), xycoords='axes fraction') protocol_ax.plot(times, trace) protocol_ax.axvspan(peak_time, tend - 50, alpha=.5, color='grey') fig.savefig(output_path) fit_ax.set_yscale('symlog') dirname, filename = os.path.split(output_path) filename = 'log10_' + filename fig.savefig(os.path.join(dirname, filename)) fit_ax.cla() dirname, filename = os.path.split(output_path) filename = 'single_exp_' + filename output_path = os.path.join(dirname, filename) fit_ax.plot(times[indices], trace[indices], color='grey', alpha=.5) fit_ax.plot(times[indices], e * np.exp((-1.0/f) * (times[indices] - peak_time)), color='red', linestyle='--') res_string = r'$\tau = ' f"{f:.1f}" r'\mathrm{ms}$' fit_ax.annotate(res_string, xy=(0.5, 0.05), xycoords='axes fraction') fig.savefig(output_path) dirname, filename = os.path.split(output_path) filename = 'log10_' + filename fit_ax.set_yscale('symlog') fig.savefig(os.path.join(dirname, filename)) plt.close(fig) return (d, b), f, peak_current if res else (np.nan, np.nan), np.nan, peak_current def detect_ramp_bounds(times, voltage_sections, ramp_no=0): """ Extract the the times at the start and end of the nth ramp in the protocol. @param times: np.array containing the time at which each sample was taken @param voltage_sections 2d np.array where each row describes a segment of the protocol: (tstart, tend, vstart, end) @param ramp_no: the index of the ramp to select. Defaults to 0 - the first ramp @returns tstart, tend: the start and end times for the ramp_no+1^nth ramp """ # Decouple this code from syncropatch_export ramps = [(tstart, tend, vstart, vend) for tstart, tend, vstart, vend in voltage_sections if vstart != vend] try: ramp = ramps[ramp_no] except IndexError: print(f"Requested {ramp_no+1}th ramp (ramp_no={ramp_no})," " but there are only {len(ramps)} ramps") tstart, tend = ramp[:2] ramp_bounds = [np.argmax(times > tstart), np.argmax(times > tend)] return ramp_bounds if __name__ == '__main__': main()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Otherwise use 2 exponentials
pcpostprocess/pcpostprocess/scripts/run_herg_qc.py
Line 1019 in 23a7048
The text was updated successfully, but these errors were encountered: