-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path4_TemporalDelay.py
146 lines (134 loc) · 4.7 KB
/
4_TemporalDelay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
"""
Comparison of the times of peak expression for protein and RNA for each gene
- The peak expression for each protein and transcript were determined using the FUCCI pseudotime analysis
- This is the first demonstration of the temporal delay between protein and RNA on the single cell level
@author: Anthony J. Cesnik, [email protected]
"""
from SingleCellProteogenomics import (Loaders, RNADataPreparation,
TemporalDelay)
import matplotlib.pyplot as plt
# Make PDF text readable
plt.rcParams["pdf.fonttype"] = 42
plt.rcParams["ps.fonttype"] = 42
plt.rcParams["savefig.dpi"] = 300
#%% Read in the protein data
import_dict = Loaders.load_temporal_delay()
u_well_plates, wp_ensg = import_dict["u_well_plates"], import_dict["wp_ensg"]
wp_iscell, wp_isnuc, wp_iscyto = (
import_dict["wp_iscell"],
import_dict["wp_isnuc"],
import_dict["wp_iscyto"],
)
ccd_comp, ccdtranscript, ccdtranscript_isoform = (
import_dict["ccd_comp"],
import_dict["ccdtranscript"],
import_dict["ccdtranscript_isoform"],
)
pol_sort_well_plate, pol_sort_norm_rev = (
import_dict["pol_sort_well_plate"],
import_dict["pol_sort_norm_rev"],
)
pol_sort_ab_nuc, pol_sort_ab_cyto, pol_sort_ab_cell, pol_sort_mt_cell = (
import_dict["pol_sort_ab_nuc"],
import_dict["pol_sort_ab_cyto"],
import_dict["pol_sort_ab_cell"],
import_dict["pol_sort_mt_cell"],
)
var_comp_prot, gini_comp_prot, cv_comp_prot = (
import_dict["var_comp"],
import_dict["gini_comp"],
import_dict["cv_comp"],
)
var_cell_prot, gini_cell_prot, cv_cell_prot = (
import_dict["var_cell"],
import_dict["gini_cell"],
import_dict["cv_cell"],
)
#%% Idea: Make temporal heatmap for peak protein expression, and compare known and novel proteins that peak at similar times
# Execution: plt.imshow makes a heatmap if given a 2D array
# Output: heatmap; correlations of known/novel proteins
highlights = [] #'ORC6','DUSP19','BUB1B','DPH2', 'FLI1']
highlights_ensg = [] #'ORC6','DUSP19','BUB1B','DPH2', 'FLI1']
nbins = 20
protein_heatmap_results = TemporalDelay.protein_heatmap(
nbins,
highlights,
highlights_ensg,
ccd_comp,
u_well_plates,
wp_ensg,
pol_sort_norm_rev,
pol_sort_well_plate,
pol_sort_ab_cell,
pol_sort_ab_nuc,
pol_sort_ab_cyto,
pol_sort_mt_cell,
wp_iscell,
wp_isnuc,
wp_iscyto,
)
sorted_maxpol_array, wp_binned_values, wp_max_pol, wp_max_pol_ccd, xvals = (
protein_heatmap_results
)
# Correlations of known and novel proteins that peak at similar times
TemporalDelay.peak_expression_correlation_analysis(
wp_binned_values, wp_max_pol, wp_ensg, pol_sort_well_plate, u_well_plates
)
#%% Create a heatmap of peak RNA expression
highlight_names, highlight_ensg = [], []
u_rna_plates = ["355","356","357"]
# Read in RNA-Seq data; use TPMs so that the gene-specific results scales match for cross-gene comparisons
valuetype, use_spikeins, biotype_to_use = "Tpms", False, "protein_coding"
adata, phases = RNADataPreparation.read_counts_and_phases(
valuetype, use_spikeins, biotype_to_use, u_rna_plates
)
adata, phasesfilt = RNADataPreparation.qc_filtering(
adata, do_log_normalize=True, do_remove_blob=True
)
adata = RNADataPreparation.zero_center_fucci(adata)
sorted_max_moving_avg_pol_ccd, norm_exp_sort, max_moving_avg_pol, sorted_rna_binned_norm = TemporalDelay.rna_heatmap(
adata, highlight_names, highlight_ensg, ccdtranscript, xvals
)
# Analyze isoforms
adata_isoform, phases_isoform = RNADataPreparation.read_counts_and_phases(
valuetype, use_spikeins, biotype_to_use, u_rna_plates, use_isoforms=True,
)
adata_isoform, phasesfilt_isoform = RNADataPreparation.qc_filtering(
adata_isoform, do_log_normalize=True, do_remove_blob=True
)
adata_isoform = RNADataPreparation.zero_center_fucci(adata_isoform)
sorted_max_moving_avg_pol_ccd_isoform, norm_exp_sort_isoform, max_moving_avg_pol_isoform, sorted_rna_binned_norm_isoform = TemporalDelay.rna_heatmap(
adata_isoform,
highlight_names,
highlight_ensg,
ccdtranscript_isoform,
xvals,
isIsoformData=True,
)
pearsonCorrelations = TemporalDelay.analyze_ccd_isoform_correlations(
adata, adata_isoform, ccdtranscript, ccdtranscript_isoform, xvals, u_rna_plates
)
#%% Compare the variances and time of peak expression between protein and RNA
TemporalDelay.compare_variances_prot_v_rna(
adata,
norm_exp_sort,
wp_ensg,
var_comp_prot,
gini_comp_prot,
cv_comp_prot,
var_cell_prot,
gini_cell_prot,
cv_cell_prot,
)
TemporalDelay.compare_peak_expression_prot_v_rna(
adata,
wp_ensg,
ccd_comp,
ccdtranscript,
wp_max_pol,
wp_max_pol_ccd,
sorted_maxpol_array,
max_moving_avg_pol,
sorted_max_moving_avg_pol_ccd,
)