Skip to content

Commit

Permalink
Update README.md with more examples and results
Browse files Browse the repository at this point in the history
Results are computed on luminance channels with EDSR/DIV2K method, instead of RGB before
  • Loading branch information
Gabriel Gouvine authored and Gabriel Gouvine committed May 15, 2021
1 parent 92e2dfd commit c94b246
Show file tree
Hide file tree
Showing 2 changed files with 94 additions and 13 deletions.
86 changes: 76 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,23 +77,89 @@ The following pretrained models are available:
* [NinaSR](doc/NinaSR.md), my own model (x2 x3 x4 x8)

<details>
<summary>DIV2K validation results</summary>
<summary>Set5 results</summary>

| Network | Parameters (M) | 2x (PSNR/SSIM) | 3x (PSNR/SSIM) | 4x (PSNR/SSIM) |
| ------------------- | -------------- | -------------- | -------------- | -------------- |
| carn | 1.59 | 37.88 / 0.9600 | 34.32 / 0.9265 | 32.14 / 0.8942 |
| carn\_m | 0.41 | 37.68 / 0.9594 | 34.06 / 0.9247 | 31.88 / 0.8907 |
| edsr\_baseline | 1.37 | 37.98 / 0.9604 | 34.37 / 0.9270 | 32.09 / 0.8936 |
| edsr | 40.7 | 38.19 / 0.9609 | 34.68 / 0.9293 | 32.48 / 0.8985 |
| ninasr\_b0 | 0.10 | 37.69 / 0.9594 | 33.91 / 0.9229 | 31.65 / 0.8868 |
| ninasr\_b1 | 1.02 | 38.00 / 0.9604 | 34.42 / 0.9274 | 32.21 / 0.8947 |
| ninasr\_b2 | 10.0 | 38.22 / 0.9612 | 34.63 / 0.9288 | 32.48 / 0.8976 |
| rcan | 15.4 | 38.27 / 0.9614 | 34.76 / 0.9299 | 32.64 / 0.9000 |
| rdn | 22.1 | 38.12 / 0.9609 | 33.98 / 0.9234 | 32.35 / 0.8968 |

</details>

<details>
<summary>Set14 results</summary>

| Network | Parameters (M) | 2x (PSNR/SSIM) | 3x (PSNR/SSIM) | 4x (PSNR/SSIM) |
| ------------------- | -------------- | -------------- | -------------- | -------------- |
| carn | 1.59 | 33.57 / 0.9173 | 30.30 / 0.8412 | 28.61 / 0.7806 |
| carn\_m | 0.41 | 33.30 / 0.9151 | 30.10 / 0.8374 | 28.42 / 0.7764 |
| edsr\_baseline | 1.37 | 33.57 / 0.9174 | 30.28 / 0.8414 | 28.58 / 0.7804 |
| edsr | 40.7 | 33.95 / 0.9201 | 30.53 / 0.8464 | 28.81 / 0.7872 |
| ninasr\_b0 | 0.10 | 33.23 / 0.9147 | 30.01 / 0.8352 | 28.26 / 0.7723 |
| ninasr\_b1 | 1.02 | 33.61 / 0.9176 | 30.37 / 0.8430 | 28.65 / 0.7824 |
| ninasr\_b2 | 10.0 | 33.99 / 0.9206 | 30.55 / 0.8461 | 28.81 / 0.7865 |
| rcan | 15.4 | 34.13 / 0.9216 | 30.63 / 0.8475 | 28.85 / 0.7878 |
| rdn | 22.1 | 33.71 / 0.9182 | 30.07 / 0.8373 | 28.72 / 0.7846 |

</details>

<details>
<summary>DIV2K results (validation set)</summary>

| Network | Parameters (M) | 2x (PSNR/SSIM) | 3x (PSNR/SSIM) | 4x (PSNR/SSIM) | 8x (PSNR/SSIM) |
| ------------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| carn | 1.59 | 34.58 / 0.9373 | 30.91 / 0.8734 | 28.98 / 0.8188 | N/A |
| carn\_m | 0.41 | 34.29 / 0.9350 | 30.65 / 0.8689 | 28.73 / 0.8131 | N/A |
| edsr\_baseline | 1.37 | 34.66 / 0.9379 | 30.96 / 0.8743 | 28.99 / 0.8191 | N/A |
| edsr | 40.7 | 35.08 / 0.9413 | 31.30 / 0.8804 | 29.30 / 0.8274 | N/A |
| ninasr\_b0 | 0.10 | 34.25 / 0.9346 | 30.56 / 0.8670 | 28.63 / 0.8102 | 25.12 / 0.6799 |
| ninasr\_b1 | 1.02 | 34.76 / 0.9388 | 31.04 / 0.8757 | 29.08 / 0.8216 | 25.48 / 0.6928 |
| ninasr\_b2 | 10.0 | 35.06 / 0.9411 | 31.29 / 0.8797 | 29.29 / 0.8267 | 25.62 / 0.6983 |
| rcan | 15.4 | 35.13 / 0.9416 | 31.34 / 0.8807 | 29.30 / 0.8276 | 25.73 / 0.7036 |
| rdn | 22.1 | 34.85 / 0.9394 | 30.59 / 0.8678 | 29.17 / 0.8240 | N/A |
| carn | 1.59 | 36.08 / 0.9451 | 32.37 / 0.8871 | 30.43 / 0.8366 | N/A |
| carn\_m | 0.41 | 35.76 / 0.9429 | 32.09 / 0.8827 | 30.18 / 0.8313 | N/A |
| edsr\_baseline | 1.37 | 36.13 / 0.9455 | 32.41 / 0.8878 | 30.43 / 0.8370 | N/A |
| edsr | 40.7 | 36.56 / 0.9485 | 32.75 / 0.8933 | 30.73 / 0.8445 | N/A |
| ninasr\_b0 | 0.10 | 35.72 / 0.9424 | 32.01 / 0.8811 | 30.08 / 0.8289 | 26.58 / 0.7076 |
| ninasr\_b1 | 1.02 | 36.23 / 0.9463 | 32.49 / 0.8891 | 30.53 / 0.8394 | 26.92 / 0.7195 |
| ninasr\_b2 | 10.0 | 36.54 / 0.9484 | 32.74 / 0.8927 | 30.74 / 0.8441 | 27.07 / 0.7247 |
| rcan | 15.4 | 36.61 / 0.9489 | 32.78 / 0.8935 | 30.73 / 0.8447 | 27.17 / 0.7292 |
| rdn | 22.1 | 36.32 / 0.9468 | 32.04 / 0.8822 | 30.61 / 0.8414 | N/A |

</details>

<details>
<summary>B100 results</summary>

| Network | Parameters (M) | 2x (PSNR/SSIM) | 3x (PSNR/SSIM) | 4x (PSNR/SSIM) |
| ------------------- | -------------- | -------------- | -------------- | -------------- |
| carn | 1.59 | 32.12 / 0.8986 | 29.07 / 0.8042 | 27.58 / 0.7355 |
| carn\_m | 0.41 | 31.97 / 0.8971 | 28.94 / 0.8010 | 27.45 / 0.7312 |
| edsr\_baseline | 1.37 | 32.15 / 0.8993 | 29.08 / 0.8051 | 27.56 / 0.7354 |
| edsr | 40.7 | 32.35 / 0.9019 | 29.26 / 0.8096 | 27.72 / 0.7419 |
| ninasr\_b0 | 0.10 | 31.94 / 0.8969 | 28.87 / 0.7996 | 27.35 / 0.7285 |
| ninasr\_b1 | 1.02 | 32.19 / 0.8999 | 29.11 / 0.8056 | 27.60 / 0.7369 |
| ninasr\_b2 | 10.0 | 32.34 / 0.9018 | 29.25 / 0.8090 | 27.71 / 0.7411 |
| rcan | 15.4 | 32.39 / 0.9024 | 29.30 / 0.8106 | 27.74 / 0.7429 |
| rdn | 22.1 | 32.25 / 0.9006 | 28.90 / 0.8004 | 27.66 / 0.7388 |

</details>

<details>
<summary>Urban100 results</summary>

| Network | Parameters (M) | 2x (PSNR/SSIM) | 3x (PSNR/SSIM) | 4x (PSNR/SSIM) |
| ------------------- | -------------- | -------------- | -------------- | -------------- |
| carn | 1.59 | 31.95 / 0.9263 | 28.07 / 0.849 | 26.07 / 0.78349 |
| carn\_m | 0.41 | 31.30 / 0.9200 | 27.57 / 0.839 | 25.64 / 0.76961 |
| edsr\_baseline | 1.37 | 31.98 / 0.9271 | 28.15 / 0.852 | 26.03 / 0.78424 |
| edsr | 40.7 | 32.97 / 0.9358 | 28.81 / 0.865 | 26.65 / 0.80328 |
| ninasr\_b0 | 0.10 | 31.21 / 0.9190 | 27.37 / 0.834 | 25.40 / 0.76207 |
| ninasr\_b1 | 1.02 | 32.18 / 0.9288 | 28.23 / 0.854 | 26.11 / 0.78772 |
| ninasr\_b2 | 10.0 | 32.92 / 0.9356 | 28.69 / 0.863 | 26.55 / 0.80087 |
| rcan | 15.4 | 33.19 / 0.9372 | 29.01 / 0.868 | 26.75 / 0.80624 |
| rdn | 22.1 | 32.41 / 0.9310 | 27.49 / 0.838 | 26.36 / 0.79460 |

</details>

## Datasets

Expand Down
21 changes: 18 additions & 3 deletions scripts/eval.sh
Original file line number Diff line number Diff line change
@@ -1,11 +1,26 @@
#!/bin/sh
# Evaluate on luminance channels, removing the border pixel; this is the convention used by most publications

for scale in 2 3 4
do
for arch in edsr_baseline edsr ninasr_b0 ninasr_b1 ninasr_b2 rcan rdn carn carn_m
for dataset in div2k_bicubic
do
echo -n "${arch} x${scale}: "
python main.py --validation-only --arch $arch --scale $scale --chop-size 400 --download-pretrained
for arch in carn carn_m edsr_baseline edsr ninasr_b0 ninasr_b1 ninasr_b2 rcan rdn
do
echo -n "${dataset} ${arch} x${scale}: "
python main.py --validation-only --arch $arch --scale $scale --dataset-val $dataset --chop-size 400 --download-pretrained --shave-border $scale --eval-luminance
done
done
done

for scale in 8
do
for dataset in div2k_bicubic
do
for arch in ninasr_b0 ninasr_b1 ninasr_b2 rcan
do
echo -n "${dataset} ${arch} x${scale}: "
python main.py --validation-only --arch $arch --scale $scale --dataset-val $dataset --chop-size 400 --download-pretrained --shave-border $scale --eval-luminance
done
done
done

0 comments on commit c94b246

Please sign in to comment.