Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Misc polish #133

Merged
merged 16 commits into from
Apr 15, 2024
10 changes: 8 additions & 2 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,11 +1,17 @@
*.jl.*.cov
*.jl.cov
*.jl.mem
/docs/build/
.DS_Store
.vscode

testing_script*.jl
settings.json

Manifest.toml
docs/Manifest.toml
test/Manifest.toml
/docs/src/generated_markdowns/*.md

/docs/src/generated
/docs/src/index.md
/docs/build/
/build
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,15 @@ authors = [ "Peter Thestrup Waade [email protected]",
"Anna Hedvig Møller [email protected]",
"Jacopo Comoglio [email protected]",
"Christoph Mathys [email protected]"]
version = "0.3.3"
version = "0.5.0"

[deps]
ActionModels = "320cf53b-cc3b-4b34-9a10-0ecb113566a3"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"

[compat]
ActionModels = "0.4"
ActionModels = "0.5"
Distributions = "0.25"
RecipesBase = "1"
julia = "1.9"
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ premade_agent("help")
### Create agent

````@example index
agent = premade_agent("hgf_binary_softmax_action")
agent = premade_agent("hgf_binary_softmax")
````

### Get states and parameters
Expand All @@ -55,10 +55,10 @@ get_parameters(agent)

![Image1](docs/src/images/readme/get_parameters.png)

Set a new parameter for initial precision of x2 and define some inputs
Set a new parameter for initial precision of xprob and define some inputs

````@example index
set_parameters!(agent, ("x2", "initial_precision"), 0.9)
set_parameters!(agent, ("xprob", "initial_precision"), 0.9)
inputs = [1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0];
nothing #hide
````
Expand All @@ -75,23 +75,23 @@ actions = give_inputs!(agent, inputs)
using StatsPlots
using Plots
plot_trajectory(agent, ("u", "input_value"))
plot_trajectory!(agent, ("x1", "prediction"))
plot_trajectory!(agent, ("x", "prediction"))
````
![Image1](docs/src/images/readme/plot_trajectory.png)

Plot state trajectory of input value, action and prediction of x1
Plot state trajectory of input value, action and prediction of x

````@example index
plot_trajectory(agent, ("u", "input_value"))
plot_trajectory!(agent, "action")
plot_trajectory!(agent, ("x1", "prediction"))
plot_trajectory!(agent, ("x", "prediction"))
````
![Image1](docs/src/images/readme/plot_trajectory_2.png)
### Fitting parameters

````@example index
using Distributions
prior = Dict(("x2", "volatility") => Normal(1, 0.5))
prior = Dict(("xprob", "volatility") => Normal(1, 0.5))

model = fit_model(agent, prior, inputs, actions, n_iterations = 20)
````
Expand Down
2 changes: 1 addition & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,10 @@ DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
HierarchicalGaussianFiltering = "63d42c3e-681c-42be-892f-a47f35336a79"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
Literate = "98b081ad-f1c9-55d3-8b20-4c87d4299306"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
RecipesBase = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"
14 changes: 7 additions & 7 deletions docs/src/Julia_src_files/index.jl → docs/julia_files/index.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,15 +24,15 @@ using ActionModels
premade_agent("help")

# ### Create agent
agent = premade_agent("hgf_binary_softmax_action")
agent = premade_agent("hgf_binary_softmax")

# ### Get states and parameters
get_states(agent)
#-
get_parameters(agent)

# Set a new parameter for initial precision of x2 and define some inputs
set_parameters!(agent, ("x2", "initial_precision"), 0.9)
# Set a new parameter for initial precision of xprob and define some inputs
set_parameters!(agent, ("xprob", "initial_precision"), 0.9)
inputs = [1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0];

# ### Give inputs to the agent
Expand All @@ -42,18 +42,18 @@ actions = give_inputs!(agent, inputs)
using StatsPlots
using Plots
plot_trajectory(agent, ("u", "input_value"))
plot_trajectory!(agent, ("x1", "prediction"))
plot_trajectory!(agent, ("xbin", "prediction"))

# Plot state trajectory of input value, action and prediction of x1
# Plot state trajectory of input value, action and prediction of xbin
plot_trajectory(agent, ("u", "input_value"))
plot_trajectory!(agent, "action")
plot_trajectory!(agent, ("x1", "prediction"))
plot_trajectory!(agent, ("xbin", "prediction"))


# ### Fitting parameters

using Distributions
prior = Dict(("x2", "volatility") => Normal(1, 0.5))
prior = Dict(("xprob", "volatility") => Normal(1, 0.5))

model = fit_model(agent, prior, inputs, actions, n_iterations = 20)

Expand Down
43 changes: 43 additions & 0 deletions docs/julia_files/tutorials/classic_JGET.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
using ActionModels, HierarchicalGaussianFiltering
using CSV, DataFrames
using Plots, StatsPlots
using Distributions


# Get the path for the HGF superfolder
hgf_path = dirname(dirname(pathof(HierarchicalGaussianFiltering)))
# Add the path to the data files
data_path = hgf_path * "/docs/src/tutorials/data/"

#Load data
data = CSV.read(data_path * "classic_cannonball_data.csv", DataFrame)
inputs = data[(data.ID.==20).&(data.session.==1), :].outcome

#Create HGF
hgf = premade_hgf("JGET", verbose = false)
#Create agent
agent = premade_agent("hgf_gaussian", hgf)
#Set parameters
parameters = Dict(
"action_noise" => 1,
("u", "input_noise") => 0,
("x", "initial_mean") => first(inputs) + 2,
("x", "initial_precision") => 0.001,
("x", "volatility") => -8,
("xvol", "volatility") => -8,
("xnoise", "volatility") => -7,
("xnoise_vol", "volatility") => -2,
("x", "xvol", "coupling_strength") => 1,
("xnoise", "xnoise_vol", "coupling_strength") => 1,
)
set_parameters!(agent, parameters)
reset!(agent)

#Simulate updates and actions
actions = give_inputs!(agent, inputs);
#Plot belief trajectories
plot_trajectory(agent, "u")
plot_trajectory!(agent, "x")
plot_trajectory(agent, "xvol")
plot_trajectory(agent, "xnoise")
plot_trajectory(agent, "xnoise_vol")
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ using Distributions
# Get the path for the HGF superfolder
hgf_path = dirname(dirname(pathof(HierarchicalGaussianFiltering)))
# Add the path to the data files
data_path = hgf_path * "/docs/src/tutorials/data/"
data_path = hgf_path * "/docs/julia_files/tutorials/data/"

# Load the data
inputs = CSV.read(data_path * "classic_binary_inputs.csv", DataFrame)[!, 1];
Expand All @@ -23,59 +23,57 @@ inputs = CSV.read(data_path * "classic_binary_inputs.csv", DataFrame)[!, 1];
hgf_parameters = Dict(
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("x2", "volatility") => -2.5,
("x2", "initial_mean") => 0,
("x2", "initial_precision") => 1,
("x3", "volatility") => -6.0,
("x3", "initial_mean") => 1,
("x3", "initial_precision") => 1,
("x1", "x2", "value_coupling") => 1.0,
("x2", "x3", "volatility_coupling") => 1.0,
("xprob", "volatility") => -2.5,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
("xvol", "volatility") => -6.0,
("xvol", "initial_mean") => 1,
("xvol", "initial_precision") => 1,
("xbin", "xprob", "coupling_strength") => 1.0,
("xprob", "xvol", "coupling_strength") => 1.0,
);

hgf = premade_hgf("binary_3level", hgf_parameters, verbose = false);

# Create an agent
agent_parameters = Dict("sigmoid_action_precision" => 5);
agent =
premade_agent("hgf_unit_square_sigmoid_action", hgf, agent_parameters, verbose = false);
agent_parameters = Dict("action_noise" => 0.2);
agent = premade_agent("hgf_unit_square_sigmoid", hgf, agent_parameters, verbose = false);

# Evolve agent and save actions
actions = give_inputs!(agent, inputs);

# Plot the trajectory of the agent
plot_trajectory(agent, ("u", "input_value"))
plot_trajectory!(agent, ("x1", "prediction"))

plot_trajectory!(agent, ("xbin", "prediction"))

# -

plot_trajectory(agent, ("x2", "posterior"))
plot_trajectory(agent, ("x3", "posterior"))
plot_trajectory(agent, ("xprob", "posterior"))
plot_trajectory(agent, ("xvol", "posterior"))

# Set fixed parameters
fixed_parameters = Dict(
"sigmoid_action_precision" => 5,
"action_noise" => 0.2,
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("x2", "initial_mean") => 0,
("x2", "initial_precision") => 1,
("x3", "initial_mean") => 1,
("x3", "initial_precision") => 1,
("x1", "x2", "value_coupling") => 1.0,
("x2", "x3", "volatility_coupling") => 1.0,
("x3", "volatility") => -6.0,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
("xvol", "initial_mean") => 1,
("xvol", "initial_precision") => 1,
("xbin", "xprob", "coupling_strength") => 1.0,
("xprob", "xvol", "coupling_strength") => 1.0,
("xvol", "volatility") => -6.0,
);

# Set priors for parameter recovery
param_priors = Dict(("x2", "volatility") => Normal(-3.0, 0.5));
param_priors = Dict(("xprob", "volatility") => Normal(-3.0, 0.5));
#-
# Prior predictive plot
plot_predictive_simulation(
param_priors,
agent,
inputs,
("x1", "prediction_mean"),
("xbin", "prediction_mean"),
n_simulations = 100,
)
#-
Expand Down Expand Up @@ -104,6 +102,6 @@ plot_predictive_simulation(
fitted_model,
agent,
inputs,
("x1", "prediction_mean"),
("xbin", "prediction_mean"),
n_simulations = 3,
)
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ using Distributions
# Get the path for the HGF superfolder
hgf_path = dirname(dirname(pathof(HierarchicalGaussianFiltering)))
# Add the path to the data files
data_path = hgf_path * "/docs/src/tutorials/data/"
data_path = hgf_path * "/docs/julia_files/tutorials/data/"

# Load the data
inputs = Float64[]
Expand All @@ -24,20 +24,19 @@ end

#Create HGF
hgf = premade_hgf("continuous_2level", verbose = false);
agent = premade_agent("hgf_gaussian_action", hgf, verbose = false);
agent = premade_agent("hgf_gaussian", hgf, verbose = false);

# Set parameters for parameter recover
parameters = Dict(
("u", "x1", "value_coupling") => 1.0,
("x1", "x2", "volatility_coupling") => 1.0,
("x", "xvol", "coupling_strength") => 1.0,
("u", "input_noise") => -log(1e4),
("x1", "volatility") => -13,
("x2", "volatility") => -2,
("x1", "initial_mean") => 1.04,
("x1", "initial_precision") => 1 / (0.0001),
("x2", "initial_mean") => 1.0,
("x2", "initial_precision") => 1 / 0.1,
"gaussian_action_precision" => 100,
("x", "volatility") => -13,
("xvol", "volatility") => -2,
("x", "initial_mean") => 1.04,
("x", "initial_precision") => 1 / (0.0001),
("xvol", "initial_mean") => 1.0,
("xvol", "initial_precision") => 1 / 0.1,
"action_noise" => 0.01,
);

set_parameters!(agent, parameters)
Expand All @@ -59,7 +58,7 @@ plot_trajectory(
xlabel = "Trading days since 1 January 2010",
)
#-
plot_trajectory!(agent, ("x1", "posterior"), color = "red")
plot_trajectory!(agent, ("x", "posterior"), color = "red")
plot_trajectory!(
agent,
"action",
Expand All @@ -71,7 +70,7 @@ plot_trajectory!(
#-
plot_trajectory(
agent,
"x2",
"xvol",
color = "blue",
size = (1300, 500),
xlims = (0, 615),
Expand All @@ -81,27 +80,26 @@ plot_trajectory(
#-
# Set priors for fitting
fixed_parameters = Dict(
("u", "x1", "value_coupling") => 1.0,
("x1", "x2", "volatility_coupling") => 1.0,
("x1", "initial_mean") => 0,
("x1", "initial_precision") => 2000,
("x2", "initial_mean") => 1.0,
("x2", "initial_precision") => 600.0,
"gaussian_action_precision" => 100,
("x", "xvol", "coupling_strength") => 1.0,
("x", "initial_mean") => 0,
("x", "initial_precision") => 2000,
("xvol", "initial_mean") => 1.0,
("xvol", "initial_precision") => 600.0,
);

param_priors = Dict(
("u", "input_noise") => Normal(-6, 1),
("x1", "volatility") => Normal(-4, 1),
("x2", "volatility") => Normal(-4, 1),
("x", "volatility") => Normal(-4, 1),
("xvol", "volatility") => Normal(-4, 1),
"action_noise" => LogNormal(log(0.01), 1),
);
#-
# Prior predictive simulation plot
plot_predictive_simulation(
param_priors,
agent,
inputs,
("x1", "posterior_mean");
("x", "posterior_mean");
n_simulations = 100,
)
#-
Expand Down
Loading
Loading