Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

removed category means and noisy binary #164

Merged
merged 1 commit into from
Sep 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions docs/julia_files/tutorials/classic_binary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,6 @@ inputs = CSV.read(data_path * "classic_binary_inputs.csv", DataFrame)[!, 1];

# Create an HGF
hgf_parameters = Dict(
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "volatility") => -2.5,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
Expand Down Expand Up @@ -54,8 +52,6 @@ plot_trajectory(agent, ("xvol", "posterior"))
# Set fixed parameters
fixed_parameters = Dict(
"action_noise" => 0.2,
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
("xvol", "initial_mean") => 1,
Expand Down
4 changes: 0 additions & 4 deletions docs/julia_files/user_guide/fitting_hgf_models.jl
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,6 @@ using HierarchicalGaussianFiltering
# We will define a binary 3-level HGF and its parameters

hgf_parameters = Dict(
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "volatility") => -2.5,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
Expand Down Expand Up @@ -86,8 +84,6 @@ plot_trajectory!(agent, ("xbin", "prediction"))
# Set fixed parameters. We choose to fit the evolution rate of the xprob node.
fixed_parameters = Dict(
"action_noise" => 0.2,
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
("xvol", "initial_mean") => 1,
Expand Down
2 changes: 0 additions & 2 deletions docs/julia_files/user_guide/utility_functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,6 @@ agent_parameter = Dict("action_noise" => 0.3)
#We also specify our HGF and custom parameter settings:

hgf_parameters = Dict(
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "volatility") => -2.5,
("xprob", "initial_mean") => 0,
("xprob", "initial_precision") => 1,
Expand Down
6 changes: 0 additions & 6 deletions src/ActionModels_variations/utils/set_parameters.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,12 +40,6 @@ function ActionModels.set_parameters!(
)
end

#If the param is a vector of category_means
if param_value isa Vector
#Convert it to a vector of reals
param_value = convert(Vector{Real}, param_value)
end

#Set the parameter value
setfield!(node.parameters, Symbol(param_name), param_value)

Expand Down
2 changes: 0 additions & 2 deletions src/create_hgf/hgf_structs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -340,8 +340,6 @@ end
Configuration of parameters in binary input node. Default category mean set to [0,1]
"""
Base.@kwdef mutable struct BinaryInputNodeParameters
category_means::Vector{Union{Real}} = [0, 1]
input_precision::Real = Inf
coupling_strengths::Dict{String,Real} = Dict{String,Real}()
end

Expand Down
2 changes: 0 additions & 2 deletions src/premade_models/premade_hgfs/premade_binary_2level.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@ function premade_binary_2level(config::Dict; verbose::Bool = true)

#Defaults
spec_defaults = Dict(
("u", "category_means") => [0, 1],
("u", "input_precision") => Inf,
("xprob", "volatility") => -2,
("xprob", "drift") => 0,
("xprob", "autoconnection_strength") => 1,
Expand Down
4 changes: 0 additions & 4 deletions src/premade_models/premade_hgfs/premade_binary_3level.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,6 @@ This HGF has five shared parameters:
"coupling_strengths_xprob_xvol"

# Config defaults:
- ("u", "category_means"): [0, 1]
- ("u", "input_precision"): Inf
- ("xprob", "volatility"): -2
- ("xvol", "volatility"): -2
- ("xbin", "xprob", "coupling_strength"): 1
Expand All @@ -28,8 +26,6 @@ function premade_binary_3level(config::Dict; verbose::Bool = true)

#Defaults
defaults = Dict(
("u", "category_means") => [0, 1],
("u", "input_precision") => Inf,
("xprob", "volatility") => -2,
("xprob", "drift") => 0,
("xprob", "autoconnection_strength") => 1,
Expand Down
34 changes: 3 additions & 31 deletions src/update_hgf/node_updates/binary_state_node.jl
Original file line number Diff line number Diff line change
Expand Up @@ -99,13 +99,8 @@ function calculate_posterior_precision(node::BinaryStateNode)
child = node.edges.observation_children[1]

#Simple update with inifinte precision
if child.parameters.input_precision == Inf
posterior_precision = Inf
#Update with finite precision
else
posterior_precision =
1 / (node.states.posterior_mean * (1 - node.states.posterior_mean))
end
posterior_precision = Inf


## If the child is a category child ##
elseif length(node.edges.category_children) > 0
Expand Down Expand Up @@ -141,30 +136,7 @@ function calculate_posterior_mean(node::BinaryStateNode, update_type::HGFUpdateT
#Set the posterior to missing
posterior_mean = missing
else
#Update with infinte input precision
if child.parameters.input_precision == Inf
posterior_mean = child.states.input_value

#Update with finite input precision
else
posterior_mean =
node.states.prediction_mean * exp(
-0.5 *
node.states.prediction_precision *
child.parameters.category_means[1]^2,
) / (
node.states.prediction_mean * exp(
-0.5 *
node.states.prediction_precision *
child.parameters.category_means[1]^2,
) +
(1 - node.states.prediction_mean) * exp(
-0.5 *
node.states.prediction_precision *
child.parameters.category_means[2]^2,
)
)
end
posterior_mean = child.states.input_value
end

## If the child is a category child ##
Expand Down
43 changes: 9 additions & 34 deletions src/utils/get_surprise.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,40 +103,15 @@
parents_prediction_mean += parent.states.prediction_mean
end

#If the input precision is infinite
if node.parameters.input_precision == Inf

#If a 1 was observed
if node.states.input_value == 0
#Get surprise
surprise = -log(1 - parents_prediction_mean)

#If a 0 was observed
elseif node.states.input_value == 1
#Get surprise
surprise = -log(parents_prediction_mean)
end

#If the input precision is finite
else
#Get the surprise
surprise =
-log(
parents_prediction_mean * pdf(
Normal(
node.parameters.category_means[1],
node.parameters.input_precision,
),
node.states.input_value,
) +
(1 - parents_prediction_mean) * pdf(
Normal(
node.parameters.category_means[2],
node.parameters.input_precision,
),
node.states.input_value,
),
)
#If a 1 was observed
if node.states.input_value == 0
#Get surprise
surprise = -log(1 - parents_prediction_mean)

Check warning on line 109 in src/utils/get_surprise.jl

View check run for this annotation

Codecov / codecov/patch

src/utils/get_surprise.jl#L109

Added line #L109 was not covered by tests

#If a 0 was observed
elseif node.states.input_value == 1
#Get surprise
surprise = -log(parents_prediction_mean)
end

return surprise
Expand Down
2 changes: 1 addition & 1 deletion test/testsuite/Aqua.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
using HierarchicalGaussianFiltering
using Aqua
Aqua.test_all(HierarchicalGaussianFiltering, ambiguities = false)
Aqua.test_all(HierarchicalGaussianFiltering, ambiguities = false, persistent_tasks = false)
2 changes: 0 additions & 2 deletions test/testsuite/test_canonical.jl
Original file line number Diff line number Diff line change
Expand Up @@ -92,8 +92,6 @@ using Plots

#Set parameters
test_parameters = Dict(
("u", "category_means") => [0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "volatility") => -2.5,
("xvol", "volatility") => -6.0,
("xbin", "xprob", "coupling_strength") => 1.0,
Expand Down
2 changes: 0 additions & 2 deletions test/testsuite/test_fit_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -75,8 +75,6 @@ using Turing

#Set fixed parameters and priors
test_fixed_parameters = Dict(
("u", "category_means") => Real[0.0, 1.0],
("u", "input_precision") => Inf,
("xprob", "initial_mean") => 3.0,
("xprob", "initial_precision") => exp(2.306),
("xvol", "initial_mean") => 3.2189,
Expand Down