Skip to content

Deep Embedded Clustering with Sparse Autoencoder (DEC-SAE)

Notifications You must be signed in to change notification settings

CuiZewen/ASPC-SAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Embedded Clustering with Sparse Autoencoder (DEC-SAE)

Usage

1. Prepare environment

conda create -n aspc python=3.6 -y
source activate aspc  #Linux
# or
conda activate aspc  # Windows

Install required packages:

pip install tensorflow-gpu==1.10 scikit-learn h5py munkres pydotplus  graphviz

2. Clone the code and prepare the datasets

git clone https://github.com/CuiZewen/DEC-SAE.git DEC-SAE
cd DEC-SAE

3. Run experiments

python run_exp.py

改动部分
1.修改了损失函数,添加了对隠层的kl散度约束,使隠层具备稀疏性,编码器修改relu为sigmoid激活函数

2.对关键代码添加中文注释,对模型结构添加了可视化输出
(调用了keras.utils.plot_model,用于输出模型结构,如果报错或者嫌安装麻烦可以将autoencoder的plot_out设置为False,
最后修改keras.utils.vis_utils中的所有pydot为pydotplus,ctrl+R替换全部就好
支持ubuntu,不支持为win0,win10配置不同)

3.对模型训练过程做了细微调整,修改优化器为Nadam,效果更好

4.添加了模型的调用接口,可以输出并查看中间层的结果,也可调用预测
增加了聚类标签匹配的函数用于还原聚类标签,采用了kuhn-Murunkres算法映射聚类标签

5.根据acc保留最优权重

6.(pip install munkres)该包实现了聚类与实际标签的映射算法

About

Deep Embedded Clustering with Sparse Autoencoder (DEC-SAE)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages