conda create -n aspc python=3.6 -y
source activate aspc #Linux
# or
conda activate aspc # Windows
Install required packages:
pip install tensorflow-gpu==1.10 scikit-learn h5py munkres pydotplus graphviz
git clone https://github.com/CuiZewen/DEC-SAE.git DEC-SAE
cd DEC-SAE
python run_exp.py
改动部分
1.修改了损失函数,添加了对隠层的kl散度约束,使隠层具备稀疏性,编码器修改relu为sigmoid激活函数
2.对关键代码添加中文注释,对模型结构添加了可视化输出
(调用了keras.utils.plot_model,用于输出模型结构,如果报错或者嫌安装麻烦可以将autoencoder的plot_out设置为False,
最后修改keras.utils.vis_utils中的所有pydot为pydotplus,ctrl+R替换全部就好
支持ubuntu,不支持为win0,win10配置不同)
3.对模型训练过程做了细微调整,修改优化器为Nadam,效果更好
4.添加了模型的调用接口,可以输出并查看中间层的结果,也可调用预测
增加了聚类标签匹配的函数用于还原聚类标签,采用了kuhn-Murunkres算法映射聚类标签
5.根据acc保留最优权重
6.(pip install munkres)该包实现了聚类与实际标签的映射算法