Skip to content

DanAnastasyev/DeepNLP-Course

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep NLP Course at ABBYY

Deep learning for NLP crash course at ABBYY.

Suggested textbook: Neural Network Methods in Natural Language Processing by Yoav Goldberg

I'm gradually updating and translating the notebooks right now. Stay in touch.

Materials

Week 1: Introduction

Sentiment analysis on the IMDB movie review dataset: a short overview of classical machine learning for NLP + indecently brief intro to keras.

Russian version: Open In Colab

Updated English version: Open In Colab

Week 2: Word Embeddings: Part 1

Meet the Word Embeddings: an unsupervised method to capture some fun relationships between words.
Phrases similarity with word embeddings model + word based machine translation without parallel data (with MUSE word embeddings).

Russian version: Open In Colab

Updated English version: Open In Colab

Week 3: Word Embeddings: Part 2

Introduction to PyTorch. Implementation of pet linear regression on pure numpy and pytorch. Implementations of CBoW, skip-gram, negative sampling and structured Word2vec models.

Russian version: Open In Colab

Updated English version: Open In Colab

Week 4: Convolutional Neural Networks

Introduction to convolutional networks. Relations between convolutions and n-grams. Simple surname detector on character-level convolutions + fun visualizations.

Russian version: Open In Colab

Updated English version: Open In Colab

Week 5: RNNs: Part 1

RNNs for text classification. Simple RNN implementation + memorization test. Surname detector in multilingual setup: character-level LSTM classifier.

Russian version: Open In Colab

Updated English version: Open In Colab

Week 6: RNNs: Part 2

RNNs for sequence labelling. Part-of-speech tagger implementations based on word embeddings and character-level word embeddings.

Russian version: Open In Colab

Week 7: Language Models: Part 1

Character-level language model for Russian troll tweets generation: fixed-window model via convolutions and RNN model.
Simple conditional language model: surname generation given source language.
And Toxic Comment Classification Challenge - to apply your skills to a real-world problem.

Russian version: Open In Colab

Week 8: Language Models: Part 2

Word-level language model for poetry generation. Pet examples of transfer learning and multi-task learning applied to language models.

Russian version: Open In Colab

Week 9: Seq2seq

Seq2seq for machine translation and image captioning. Byte-pair encoding, beam search and other usefull stuff for machine translation.

Russian version: Open In Colab

Week 10: Seq2seq with Attention

Seq2seq with attention for machine translation and image captioning.

Russian version: Open In Colab

Week 11: Transformers & Text Summarization

Implementation of Transformer model for text summarization. Discussion of Pointer-Generator Networks for text summarization.

Russian version: Open In Colab

Week 12: Dialogue Systems: Part 1

Goal-orientied dialogue systems. Implemention of the multi-task model: intent classifier and token tagger for dialogue manager.

Russian version: Open In Colab

Week 13: Dialogue Systems: Part 2

General conversation dialogue systems and DSSMs. Implementation of question answering model on SQuAD dataset and chit-chat model on OpenSubtitles dataset.

Russian version: Open In Colab

Week 14: Pretrained Models

Pretrained models for various tasks: Universal Sentence Encoder for sentence similarity, ELMo for sequence tagging (with a bit of CRF), BERT for SWAG - reasoning about possible continuation.

Russian version: Open In Colab

Final Presentation

NLP Summary - summary of cool stuff that appeared and didn't in the course.

Releases

No releases published

Packages

No packages published