Skip to content

DanialSoleimany/CNN-Rice-Image-Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

Rice Varieties Classification Using Convolutional Neural Networks (CNN) and AlexNet

How are Convolutional Neural Networks (CNN) and AlexNet used in classifying rice varieties?

This work uses Convolutional Neural Networks (CNN) to classify five different rice varieties based on their images. By analyzing 75,000 grain images, the CNN model achieved a 99% and AlexNet model achieved a 95% success rate in distinguishing between the varieties.

What are the different varieties of rice used in this work?

Rice, which is among the most widely produced grain products worldwide, has many genetic varieties. These varieties are separated from each other due to some of their features, such as texture, shape, and color. In this work, five different varieties of rice often grown in Turkey were used: Arborio, Basmati, Ipsala, Jasmine, and Karacadag.

How many grain images were included in the dataset?

A total of 75,000 grain images were included in the dataset, with 15,000 images from each of the five rice varieties: Arborio, Basmati, Ipsala, Jasmine, and Karacadag.

Future Work

We can explore improving the performance of CNN and AlexNet models by experimenting with different optimizers such as RMSprop and Adagrad. Additionally, trying alternative CNN architectures like VGGNet and ResNet can help determine if they yield better results in classifying various types of rice images. Increasing the number of epochs and adjusting other hyperparameters are also avenues worth exploring to assess their impact on performance.

Connect with Me

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published