https://huggingface.co/spaces/decodingdatascience/newrag-pine
This project demonstrates how to build a fast, production-grade AI-powered telecom customer support assistant using the Groq API and optimized GenAI configurations.
A step-by-step guide to:
- Sending POST requests using Postman
- Connecting to the Groq API
- Testing default vs. optimized GenAI configurations
- Applying structured prompt templates
- Deploying a simple LLM-powered support API
| Layer | Tool/Tech |
|---|---|
| LLM | Groq API |
| API Platform | FastAPI / Postman |
| Prompt Design | Custom templates |
| Deployment | Localhost / Cloud (optional) |
| Parameter | Description |
|---|---|
temperature |
Controls randomness (default: 0.7) |
top_p |
Nucleus sampling |
max_tokens |
Max tokens to generate |
frequency_penalty |
Repetition control |
presence_penalty |
Topic diversity |
- Basic user input
- Uses Groq defaults
- For benchmarking
- Structured input (e.g., role, intent, constraints)
- Custom temperature and token limits
- Optimized for domain-specific responses
git clone https://github.com/your-username/telecom-support-llm.git
cd telecom-support-llm