Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Set: move cartesian product to separate file and change pair notation #33

Merged
merged 1 commit into from
Feb 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions List.lp
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@ protected with nosimpl.
*/

require open Stdlib.Set Stdlib.Prop Stdlib.FOL Stdlib.Eq
Stdlib.Nat Stdlib.Bool;
Stdlib.Nat Stdlib.Bool Stdlib.Prod;

(a:Set) inductive 𝕃:TYPE ≔
| □ : 𝕃 a // \Box
Expand Down Expand Up @@ -583,20 +583,20 @@ symbol zip [a b] : 𝕃 a → 𝕃 b → 𝕃 (a × b);
rule zip □ □ ↪ □
with zip □ _ ↪ □
with zip _ □ ↪ □
with zip ($x ⸬ $l) ($y ⸬ $m) ↪ $x & $y ⸬ zip $l $m;
with zip ($x ⸬ $l) ($y ⸬ $m) ↪ ($x $y) ⸬ zip $l $m;

symbol unzip1 [a b] : 𝕃 (a × b) → 𝕃 a;

rule unzip1 □ ↪ □
with unzip1 ($x & _ ⸬ $l) ↪ $x ⸬ unzip1 $l;
with unzip1 (($x ‚ _ ) ⸬ $l) ↪ $x ⸬ unzip1 $l;

symbol unzip2 [a b] : 𝕃 (a × b) → 𝕃 b;

rule unzip2 □ ↪ □
with unzip2 (_ & $y ⸬ $l) ↪ $y ⸬ unzip2 $l;
with unzip2 ((_ ‚ $y) ⸬ $l) ↪ $y ⸬ unzip2 $l;

assert ⊢ unzip1 ((3 & 5) ⸬ (6 & 4) ⸬ (7 & 2) ⸬ (8 & 1) ⸬ □) ≡ 3 ⸬ 6 ⸬ 7 ⸬ 8 ⸬ □;
assert ⊢ unzip2 ((3 & 5) ⸬ (6 & 4) ⸬ (7 & 2) ⸬ (8 & 1) ⸬ □) ≡ 5 ⸬ 4 ⸬ 2 ⸬ 1 ⸬ □;
assert ⊢ unzip1 ((3 5) ⸬ (6 4) ⸬ (7 2) ⸬ (8 1) ⸬ □) ≡ 3 ⸬ 6 ⸬ 7 ⸬ 8 ⸬ □;
assert ⊢ unzip2 ((3 5) ⸬ (6 4) ⸬ (7 2) ⸬ (8 1) ⸬ □) ≡ 5 ⸬ 4 ⸬ 2 ⸬ 1 ⸬ □;

symbol all2 [a b] : (τ a → τ b → 𝔹) → 𝕃 a → 𝕃 b → 𝔹;

Expand Down Expand Up @@ -687,12 +687,12 @@ begin
apply @seq_ind2 a b (λ l1 l2, (zip (l1 ++ sa) (l2 ++ sb) = zip l1 l2 ++ zip sa sb)) _ _ la lb h {
reflexivity;
} {
assume l1 l2 e1 e2 h1 h2; simplify; apply feq (λ l, e1 & e2 ⸬ l) h2;
assume l1 l2 e1 e2 h1 h2; simplify; apply feq (λ l, (e1 e2) ⸬ l) h2;
};
end;

opaque symbol nth_zip [a b] (x:τ a) (y:τ b) la lb i: π(size la = size lb) →
π(nth (x & y) (zip la lb) i = nth x la i & nth y lb i) ≔
π(nth (x y) (zip la lb) i = nth x la i nth y lb i) ≔
begin
assume a b x y; induction
{ assume lb i h;
Expand Down
20 changes: 20 additions & 0 deletions Prod.lp
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
// Cartesian product

require open Stdlib.Set;

constant symbol × : Set → Set → Set; notation × infix right 10; // \times

assert a b c ⊢ a × b × c ≡ a × (b × c);

symbol ‚ [a b] : τ a → τ b → τ (a × b); notation ‚ infix right 30;

assert a (x:τ a) b (y:τ b) c (z:τ c) ⊢ x ‚ y ‚ z : τ(a × b × c);
assert x y z ⊢ x ‚ y ‚ z ≡ x ‚ (y ‚ z);

symbol ₁ [a b] : τ(a × b) → τ a; notation ₁ postfix 10;

rule ($x ‚ _)₁ ↪ $x;

symbol ₂ [a b] : τ(a × b) → τ b; notation ₂ postfix 10;

rule (_ ‚ $x)₂ ↪ $x;
19 changes: 0 additions & 19 deletions Set.lp
Original file line number Diff line number Diff line change
Expand Up @@ -13,22 +13,3 @@ builtin "T" ≔ τ;
// We assume that sets are non-empty

symbol el a : τ a;

// Cartesian product

constant symbol × : Set → Set → Set; notation × infix right 10; // \times

assert a b c ⊢ a × b × c ≡ a × (b × c);

symbol & [a b] : τ a → τ b → τ (a × b); notation & infix right 30;

assert a (x:τ a) b (y:τ b) c (z:τ c) ⊢ x & y & z : τ(a × b × c);
assert x y z ⊢ x & y & z ≡ x & (y & z);

symbol ₁ [a b] : τ(a × b) → τ a; notation ₁ postfix 10;

rule ($x & _)₁ ↪ $x;

symbol ₂ [a b] : τ(a × b) → τ b; notation ₂ postfix 10;

rule (_ & $x)₂ ↪ $x;