Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions src/lmms_engine/models/qwen3_moe/qwen3_moe_liger.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def lce_forward(

output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
output_router_logits if output_router_logits is not None else getattr(self.config, "output_router_logits", True)
)

output_hidden_states = (
Expand Down Expand Up @@ -144,12 +144,14 @@ def lce_forward(
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)

aux_loss = None
if output_router_logits:
router_logits = getattr(outputs, "router_logits", None)
if output_router_logits and router_logits is not None:
aux_loss_mask = None if use_rmpad else attention_mask
aux_loss = load_balancing_loss_func(
outputs.router_logits,
router_logits,
self.num_experts,
self.num_experts_per_tok,
attention_mask,
aux_loss_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
Expand All @@ -161,5 +163,5 @@ def lce_forward(
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=None, # Current always None
router_logits=router_logits,
)
32 changes: 27 additions & 5 deletions src/lmms_engine/models/qwen3_moe/qwen3_moe_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ def model_forward(
cache_position: Optional[torch.LongTensor] = None,
cu_seq_lens: Optional[torch.IntTensor] = None,
indices: Optional[torch.IntTensor] = None,
output_router_logits: Optional[bool] = None,
**kwargs,
) -> MoeModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
Expand Down Expand Up @@ -87,8 +88,13 @@ def model_forward(
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)

output_router_logits = (
output_router_logits if output_router_logits is not None else getattr(self.config, "output_router_logits", True)
)
all_router_logits = () if output_router_logits else None

for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
Expand All @@ -98,16 +104,25 @@ def model_forward(
cache_position=cache_position,
cu_seq_lens=cu_seq_lens,
indices=indices,
output_router_logits=output_router_logits,
**kwargs,
)

if isinstance(layer_outputs, tuple):
hidden_states, router_logits = layer_outputs
if output_router_logits and router_logits is not None:
all_router_logits += (router_logits,)
else:
hidden_states = layer_outputs

hidden_states = self.norm(hidden_states)

return BaseModelOutputWithPastAndRmpad(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
seq_lens=cu_seq_lens,
word_idx=indices,
router_logits=all_router_logits if output_router_logits else None,
)


Expand All @@ -121,6 +136,7 @@ def decoder_layer_forward(
cache_position: Optional[torch.LongTensor] = None,
cu_seq_lens: Optional[torch.IntTensor] = None,
indices: Optional[torch.IntTensor] = None,
output_router_logits: bool = True,
**kwargs,
) -> torch.FloatTensor:
"""
Expand Down Expand Up @@ -170,14 +186,20 @@ def decoder_layer_forward(
# Unsqueeze to unpack shape for the MoE sparse layer
hidden_states = hidden_states.unsqueeze(0)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
# For the MoE layers, we need to unpack
if isinstance(hidden_states, tuple):
hidden_states, _ = hidden_states
mlp_output = self.mlp(hidden_states)

router_logits = None
if isinstance(mlp_output, tuple):
hidden_states, router_logits = mlp_output
else:
hidden_states = mlp_output

# Squeeze to pack shape for later
hidden_states = hidden_states.squeeze(0)
hidden_states = residual + hidden_states

if output_router_logits and router_logits is not None:
return hidden_states, router_logits
return hidden_states


Expand Down
12 changes: 8 additions & 4 deletions src/lmms_engine/models/qwen3_omni_moe/qwen3_omni_moe_liger.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,9 @@ def lce_forward(
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits
output_router_logits
if output_router_logits is not None
else getattr(self.config.text_config, "output_router_logits", True)
)

tokens_count = attention_mask.sum().item()
Expand Down Expand Up @@ -272,12 +274,14 @@ def lce_forward(

# MoE auxiliary loss handling
aux_loss = None
if output_router_logits and hasattr(outputs, "router_logits"):
router_logits = getattr(outputs, "router_logits", None)
if output_router_logits and router_logits is not None:
aux_loss_mask = None if use_rmpad else attention_mask
aux_loss = load_balancing_loss_func(
outputs.router_logits,
router_logits,
self.num_experts,
self.num_experts_per_tok,
attention_mask,
aux_loss_mask,
)
if labels is not None and loss is not None:
# Add auxiliary loss weighted by router_aux_loss_coef
Expand Down
34 changes: 28 additions & 6 deletions src/lmms_engine/models/qwen3_omni_moe/qwen3_omni_moe_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ def text_model_forward(
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
cu_seq_lens: Optional[torch.IntTensor] = None,
Expand All @@ -108,6 +109,9 @@ def text_model_forward(
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_router_logits = (
output_router_logits if output_router_logits is not None else getattr(self.config, "output_router_logits", True)
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

Expand Down Expand Up @@ -153,13 +157,14 @@ def text_model_forward(
position_embeddings = self.rotary_emb(hidden_states, position_ids)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_router_logits = () if output_router_logits else None

for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)

if self.gradient_checkpointing and self.training:
hidden_states = torch.utils.checkpoint.checkpoint(
layer_outputs = torch.utils.checkpoint.checkpoint(
decoder_layer.__call__,
hidden_states,
position_embeddings,
Expand All @@ -169,10 +174,11 @@ def text_model_forward(
cache_position,
cu_seq_lens,
indices,
output_router_logits,
use_reentrant=False,
)
else:
hidden_states = decoder_layer(
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
Expand All @@ -181,9 +187,17 @@ def text_model_forward(
cache_position=cache_position,
cu_seq_lens=cu_seq_lens,
indices=indices,
output_router_logits=output_router_logits,
**kwargs,
)

if isinstance(layer_outputs, tuple):
hidden_states, router_logits = layer_outputs
if output_router_logits and router_logits is not None:
all_router_logits += (router_logits,)
else:
hidden_states = layer_outputs

hidden_states = self.norm(hidden_states)

if output_hidden_states:
Expand All @@ -199,6 +213,7 @@ def text_model_forward(
attentions=all_attentions,
seq_lens=cu_seq_lens,
word_idx=indices,
router_logits=all_router_logits if output_router_logits else None,
)


Expand All @@ -212,6 +227,7 @@ def decoder_layer_forward(
cache_position: Optional[torch.LongTensor] = None,
cu_seq_lens: Optional[torch.IntTensor] = None,
indices: Optional[torch.IntTensor] = None,
output_router_logits: bool = True,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
Expand All @@ -233,14 +249,20 @@ def decoder_layer_forward(
residual = hidden_states
hidden_states = hidden_states.unsqueeze(0)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
# For the MoE layers, we need to unpack
if isinstance(hidden_states, tuple):
hidden_states, _ = hidden_states
mlp_output = self.mlp(hidden_states)

router_logits = None
if isinstance(mlp_output, tuple):
hidden_states, router_logits = mlp_output
else:
hidden_states = mlp_output

# Squeeze to pack shape for later
hidden_states = hidden_states.squeeze(0)
hidden_states = residual + hidden_states

if output_router_logits and router_logits is not None:
return hidden_states, router_logits
return hidden_states


Expand Down
5 changes: 3 additions & 2 deletions src/lmms_engine/models/qwen3_vl_moe/qwen3_vl_moe_liger.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def lce_forward(
output_router_logits = (
output_router_logits
if output_router_logits is not None
else getattr(self.config.text_config, "output_router_logits", False)
else getattr(self.config.text_config, "output_router_logits", True)
)

outputs = self.model(
Expand Down Expand Up @@ -109,11 +109,12 @@ def lce_forward(

if output_router_logits and router_logits is not None:
router_aux_loss_coef = getattr(self.config.text_config, "router_aux_loss_coef", 0.001)
aux_loss_mask = None if use_rmpad else attention_mask
aux_loss = load_balancing_loss_func(
router_logits,
config.num_experts,
config.num_experts_per_tok,
attention_mask,
aux_loss_mask,
)
loss = loss + router_aux_loss_coef * aux_loss.to(loss.device)

Expand Down
6 changes: 2 additions & 4 deletions src/lmms_engine/models/qwen3_vl_moe/qwen3_vl_moe_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -336,9 +336,7 @@ def text_model_forward(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_router_logits = (
output_router_logits
if output_router_logits is not None
else getattr(self.config, "output_router_logits", False)
output_router_logits if output_router_logits is not None else getattr(self.config, "output_router_logits", True)
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Expand Down Expand Up @@ -443,7 +441,7 @@ def decoder_layer_forward(
cache_position: Optional[torch.LongTensor] = None,
cu_seq_lens: Optional[torch.IntTensor] = None,
indices: Optional[torch.IntTensor] = None,
output_router_logits: bool = False,
output_router_logits: bool = True,
**kwargs,
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]:
residual = hidden_states
Expand Down