Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding OCRBench v2 to lmms-eval #566

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 91 additions & 0 deletions lmms_eval/tasks/ocrbench_v2/IoUscore_metric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import os
import re
import ast
import ipdb
from lmms_eval.tasks.ocrbench_v2.vqa_metric import vqa_evaluation


def calculate_iou(box1, box2):

try:
box1 = [int(coordinate) for coordinate in box1]
box2 = [int(coordinate) for coordinate in box2]
except:
return 0

x1_inter = max(box1[0], box2[0])
y1_inter = max(box1[1], box2[1])
x2_inter = min(box1[2], box2[2])
y2_inter = min(box1[3], box2[3])

inter_area = max(0, x2_inter - x1_inter) * max(0, y2_inter - y1_inter)

box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])

union_area = box1_area + box2_area - inter_area

iou = inter_area / union_area if union_area != 0 else 0

return iou


def vqa_with_position_evaluation(predict, img_metas):

score_content, score_bbox = .0, .0
if "answer" in predict.keys():
score_content = vqa_evaluation(predict["answer"], img_metas["answers"])
if "bbox" in predict.keys():
gt_bbox = img_metas["bbox"]
try:
predict_bbox_list = ast.literal_eval(predict["bbox"])
score_bbox = calculate_iou(predict_bbox_list, gt_bbox)
except:
score_bbox = 0
return 0.5 * score_content + 0.5 * score_bbox


def extract_coordinates(text):
# Regex pattern to match coordinates in either (x1, y1, x2, y2) or [x1, y1, x2, y2] format

pattern = r'[\(\[]\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*[\)\]]'

matches = list(re.finditer(pattern, text))
coords_list = []
coords_set = set()
for match in matches:

x1, y1, x2, y2 = map(int, match.groups())

if all(0 <= n <= 1000 for n in [x1, y1, x2, y2]):
coords = (x1, y1, x2, y2)

if coords in coords_set:
coords_list = [c for c in coords_list if c != coords]

coords_list.append(coords)
coords_set.add(coords)
if coords_list:
last_coords = coords_list[-1]
return list(last_coords)
else:
return None


if __name__ == "__main__":

print("Example for Text Grounding task.")
box1 = [50, 50, 150, 150]
box2 = [60, 60, 140, 140]
iou_score = calculate_iou(box1, box2)
print(f"IoU score: {iou_score}")

print("Example for VQA with position task.")
pred = {"content": "The content is Hello Buddies", "bbox": box1}
gt = {"content": "Hello Buddies", "bbox": box2}

vqa_score = vqa_evaluation(pred["content"], gt["content"])
iou_score = calculate_iou(pred["bbox"], gt["bbox"])

print(f"VQA score: {vqa_score}")
print(f"IoU score: {iou_score}")
Loading
Loading