Skip to content

Tensorflow implementation for Speech Enhancement (DDAE)

License

Notifications You must be signed in to change notification settings

FenardH/DeepDenoisingAutoencoder

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Denoising Autoencoder (DDAE) for Speech Enhancement

Tensorflow implementation of Speech Enhancement Based on Deep Denoising Autoencoder

Getting Started

Clone This repository to your local machine and run create_dir.sh first.

Prerequisites

  • python 3.5
  • tensorflow-gpu 1.8.0
  • scikit-learn 0.19.1
  • scipy 1.1.0
  • h5py 2.7.1
  • librosa 0.5.1
  • numpy 1.14.3
  • tqdm 4.23.2

Getting Started

  1. Download free dataset from VoxForge for clean data. Here I would recommed download cmu_us_awb_arctic.tgz
  2. Unzip clean dataset to /DeepDenoisingAutoencoder/data/raw/clean/
  3. Download free dataset from ESC-50 for noise data.
  4. Move ESC-50-master/audio to /DeepDenoisingAutoencoder/data/raw/noise/
  5. Set parameters in python/main.py
  6. Run python/main.py

Result

Spectrogram on Test data

Deployment

You can read many comments inside all .py files.

Authors

Yu-Ding Lu - Linkedin

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

  • Bio-ASP lab - CITI - Academia Sinica

About

Tensorflow implementation for Speech Enhancement (DDAE)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%