Skip to content
forked from khanrc/swad

Official Implementation of SWAD (NeurIPS 2021)

License

Notifications You must be signed in to change notification settings

FrancescoCappio/swad

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21)

Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, Sungrae Park.

Note that this project is built upon DomainBed@3fe9d7.

Preparation

Dependencies

pip install -r requirements.txt

Datasets

python -m domainbed.scripts.download --data_dir=/my/datasets/path

Environments

Environment details used for our study.

Python: 3.8.6
PyTorch: 1.7.0+cu92
Torchvision: 0.8.1+cu92
CUDA: 9.2
CUDNN: 7603
NumPy: 1.19.4
PIL: 8.0.1

How to Run

train_all.py script conducts multiple leave-one-out cross-validations for all target domain.

python train_all.py exp_name --dataset PACS --data_dir /my/datasets/path

Experiment results are reported as a table. In the table, the row SWAD indicates out-of-domain accuracy from SWAD. The row SWAD (inD) indicates in-domain validation accuracy.

Example results:

+------------+--------------+---------+---------+---------+---------+
| Selection  | art_painting | cartoon |  photo  |  sketch |   Avg.  |
+------------+--------------+---------+---------+---------+---------+
|   oracle   |   82.245%    | 85.661% | 97.530% | 83.461% | 87.224% |
|    iid     |   87.919%    | 78.891% | 96.482% | 78.435% | 85.432% |
|    last    |   82.306%    | 81.823% | 95.135% | 82.061% | 85.331% |
| last (inD) |   95.807%    | 95.291% | 96.306% | 95.477% | 95.720% |
| iid (inD)  |   97.275%    | 96.619% | 96.696% | 97.253% | 96.961% |
|    SWAD    |   89.750%    | 82.942% | 97.979% | 81.870% | 88.135% |
| SWAD (inD) |   97.713%    | 97.649% | 97.316% | 98.074% | 97.688% |
+------------+--------------+---------+---------+---------+---------+

In this example, the DG performance of SWAD for PACS dataset is 88.135%.

If you set indomain_test option to True, the validation set is splitted to validation and test sets, and the (inD) keys become to indicate in-domain test accuracy.

Reproduce the results of the paper

We provide the instructions to reproduce the main results of the paper, Table 1 and 2. Note that the difference in a detailed environment or uncontrolled randomness may bring a little different result from the paper.

  • PACS
python train_all.py PACS0 --dataset PACS --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py PACS1 --dataset PACS --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py PACS2 --dataset PACS --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • VLCS
python train_all.py VLCS0 --dataset VLCS --deterministic --trial_seed 0 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
python train_all.py VLCS1 --dataset VLCS --deterministic --trial_seed 1 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
python train_all.py VLCS2 --dataset VLCS --deterministic --trial_seed 2 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
  • OfficeHome
python train_all.py OH0 --dataset OfficeHome --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py OH1 --dataset OfficeHome --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py OH2 --dataset OfficeHome --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • TerraIncognita
python train_all.py TR0 --dataset TerraIncognita --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py TR1 --dataset TerraIncognita --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py TR2 --dataset TerraIncognita --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • DomainNet
python train_all.py DN0 --dataset DomainNet --deterministic --trial_seed 0 --checkpoint_freq 500 --data_dir /my/datasets/path
python train_all.py DN1 --dataset DomainNet --deterministic --trial_seed 1 --checkpoint_freq 500 --data_dir /my/datasets/path
python train_all.py DN2 --dataset DomainNet --deterministic --trial_seed 2 --checkpoint_freq 500 --data_dir /my/datasets/path

Main Results

Citation

The paper will be published at NeurIPS 2021.

@inproceedings{cha2021swad,
  title={SWAD: Domain Generalization by Seeking Flat Minima},
  author={Cha, Junbum and Chun, Sanghyuk and Lee, Kyungjae and Cho, Han-Cheol and Park, Seunghyun and Lee, Yunsung and Park, Sungrae},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

License

This source code is released under the MIT license, included here.

This project includes some code from DomainBed, also MIT licensed.

About

Official Implementation of SWAD (NeurIPS 2021)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%