This repository contains the official code for the paper: METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous Driving.
Rohan Chandra, Xijun Wang, Mridul Mahajan, Rahul Kala, Rishitha Palugulla, Chandrababu Naidu, Alok Jain, and Dinesh Manocha
ICRA 2023 | Preprint | Project Page
This repository is based on MMDetection and MMAction2.
Download the dataset here.
-
Run the following command to extract frames from the videos:
python videos2frames.py --videos_directory /path/to/videos_dir --output_directory /path/to/output_dir
-
Run the following command to reorganize the dataset into COCO format for object detection:
python xml2coco.py --dataset_directory /path/to/dataset_dir --output_directory /path/to/output_dir
-
Run the following command to reorganize the dataset into rawframe annotation format for behavior prediction:
python xml2rawframe.py --dataset_directory /path/to/dataset_dir --output_directory /path/to/output_dir
-
Download the pre-trained DETR model from link.
-
Download the pre-trained TSN model from link.
-
Update the paths to the base config file, train annotations file, the test annotations file, and the pre-trained model in
detr_config.py
andtsn_config.py
.
-
Run the following command to initiate the training process for DETR:
python mmdetection/tools/train.py detr_config.py
-
Run the following command to initiate the training process for TSN:
python mmaction2/tools/train.py tsn_config.py
-
Run the following command to initiate the testing process for DETR:
python mmdetection/tools/test.py detr_config.py detr_pretrained.pth --eval bbox mAP recall
-
Run the following command to initiate the testing process for TSN:
python mmaction2/tools/test.py tsn_config.py tsn_pretrained.pth --eval mmit_mean_average_precision
-
Installation (https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md)
-
DATA (Json file): Change the frame path in json file to your own path: e.g. "file_name": "/scratch0/xijunwang/data/METEOR_Dataset/Frame_XML_Annotations/REC_2020_10_12_01_26_57_F/frame_000000.JPG" -> "file_name": "/xxx/REC_2020_10_12_01_26_57_F/frame_000000.JPG"
-
Train:
tools/dist_train.sh configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_1x_metor.py 8 --cfg-options model.pretrained=<PRETRAIN_MODEL>
-
Reference