Skip to content

GOFIRST-Robotics/NorthStar_Taproot_Edu

Repository files navigation

pipeline status

Currently, tutorials 1, 2, and 4 are "done" but in beta testing. You may follow these tutorials if you would like You can also refer to the old aruw-edu.

Resources

To get started with the aruw-edu tutorials, refer to the aruw-edu wiki.

Other resources:

New user guide

Setting up a development environment

If you want the easiest setup experience and do not require deploying code to hardware, consider developing within the provided Docker container.

Otherwise, follow the guide appropriate for your operating system.

Finally, install pipenv and set up the build tools:

pip3 install pipenv
cd aruw-edu-project/
pipenv install

Getting started with this repo

Make sure you have followed the above setup instructions.

Run the following to clone this repository:

git clone --recursive https://gitlab.com/aruw/controls/aruw-edu.git

If you use the Docker container, or have already cloned the repository yourself, you should instead run:

git submodule update --init --recursive

Now, cd into the project directory, activate the virtualenv, and run some builds:

cd my-amazing-project/aruw-edu-project
pipenv shell
# Build for hardware
scons build
# Run automated tests
scons run-tests

Returning to the development environment

You will need to run pipenv shell from this directory every time you open a new terminal, before using scons or lbuild.

Workflow guide

Getting around VSCode

Microsoft provides a helpful website with a number of shortcuts for getting around VSCode. There are many shortcuts that make programming faster.

Building code and programming the RoboMaster Development Board

If you would like to use the terminal instead, see the section "Building and running via the terminal" below.

  1. Make sure you have VSCode opened in the folder aruw-edu (not aruw-edu-project)
  2. Connect an ST-Link to the RoboMaster Development Board and your computer.
  3. In VSCode, open the Command Palette (Ctrl+shift+P)
  4. Find Tasks: Run Task. You should see the options below. Select Program - Debug or Program - Release.

Debugging with an ST-Link

  1. Open the folder aruw-aruw-edu-project in VSCode. Hit the debug tab on the left side or type Ctrl+shift+D.
  2. Hit the green play arrow on the left top of the screen.
  3. See this page for more information about using the ST-Link for programming the MCB and debugging.

Debugging with a J-Link

See the wiki for an explanation on the difference between an ST-Link and J-Link and a step-by-step procedure on how to use the J-Link.

Selecting and using robot types

Specify the robot type via the command line when compiling (see below). For vscode IntelliSense, navigate to /aruw-edu-project/robot-type/robot_type.hpp and change the macro defined in this file.

Each robot is signified by a unique macro which can be checked to special-case code:

#if defined(TARGET_STANDARD)
// Only included if building for the Standard
initializeStandard();
#endif

How to select an appropriate VSCode C/C++ configuration

This codebase has a number of different build targets (see this wiki page for more information). Because the build setup is different for the test, sim, and RoboMaster Development Board (aka MCB) environments, while working on a particular portion of code you may select an appropriate profile that provides optimal intellisense. To select a configuration, in VSCode, type Ctrl+Shift+P, then type "C/C++:Select a Configuration" and hit enter. A dropdown menu will appear where you may choose either the "Test", "Sim", or "Hardware" configuration.

Upgrading Taproot

The Taproot project recommends that user projects occasionally upgrade the version of Taproot that they depend on. The guide for doing so is here.

Building and running via the terminal

The below commands require that your working directory is /aruw-edu-project (where the SConstruct and project.xml files are).

  • lbuild build: Re-generates out copy of taproot and modm.
  • scons build: Builds the firmware image for the hardware target. Creates a "release" folder located in build/hardware/ which contains the final .elf file as well as the intermediate object files (.o).
  • scons build-tests: Builds a program which hosts our unit tests. This executable can be run on your host computer (only supported on Linux) and prints results for each unit test run.
  • scons run: Builds as with scons build and then programs the board.
  • scons run-tests: Builds and runs the unit test program.
  • scons size: Prints statistics on program size and (statically-)allocated memory. Note that the reported available heap space is an upper bound, and this tool has no way of knowing about the real size of dynamic allocations.

Below is the full usage statement from our scons build environment. Note that you can select the robot, profile, or whether or not you want profiling to be on using the various options.

Usage: scons <target> [profile=<debug|release|fast>] [robot=TARGET_<ROBOT_TYPE>] [profiling=<true|false>] [tutorial_to_test=<tank_drive|agitator_control>]
    "<target>" is one of:
        - "build": build all code for the hardware platform.
        - "run": build all code for the hardware platform, and deploy it to the board via a connected ST-Link.
        - "build-tests": build core code and tests for the current host platform.
        - "run-tests": build core code and tests for the current host platform, and execute them locally with the test runner.
        - "run-tests-gcov": builds core code and tests, executes them locally, and captures and prints code coverage information
        - "build-sim": build all code for the simulated environment, for the current host platform.
        - "run-sim": build all code for the simulated environment, for the current host platform, and execute the simulator locally.
    "TARGET_<ROBOT_TYPE>" is an optional argument that can override whatever robot type has been specified in robot_type.hpp.
        - <ROBOT_TYPE> must be one of the following:
            - STANDARD
    "tutorial_to_test" is an optional parameter that allows you to build the unit tests for only the tutorial you are working on.
        This is useful since not all unit tests will compile until all tutorials are complete, yet you want to run unit tests on all
        tutorials as you go

About

The official University of Minnesota RoboMaster GitHub for 2024

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published