Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 71 additions & 15 deletions vmas/scenarios/transport.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@

class Scenario(BaseScenario):
def make_world(self, batch_dim: int, device: torch.device, **kwargs):
n_agents = kwargs.get("n_agents", 2)
self.n_agents = kwargs.get("n_agents", 2)

# general world settings
self.world_semidim = kwargs.get("world_semidim", 1.0) # m
Expand Down Expand Up @@ -65,9 +65,11 @@ def make_world(self, batch_dim: int, device: torch.device, **kwargs):
self.time_penalty = kwargs.get("time_penalty", 0.0)

# capabilities
self.capability_mult_range = kwargs.get("capability_mult_range", [0.5, 2])
self.capability_mult_min = self.capability_mult_range[0]
self.capability_mult_max = self.capability_mult_range[1]
self.iter_ct = 0
self.agent_0_failed = False
# self.capability_mult_range = kwargs.get("capability_mult_range", [0.5, 2])
# self.capability_mult_min = self.capability_mult_range[0]
# self.capability_mult_max = self.capability_mult_range[1]
self.capability_representation = kwargs.get("capability_representation", "raw")

# Make world
Expand All @@ -86,12 +88,19 @@ def make_world(self, batch_dim: int, device: torch.device, **kwargs):
)

# Add agents
print("make world called")
capabilities = [] # save capabilities for relative capabilities later
for i in range(n_agents):
max_linear_vel = self.default_agent_max_linear_vel * random.uniform(self.capability_mult_min, self.capability_mult_max)
max_angular_vel = self.default_agent_max_angular_vel * random.uniform(self.capability_mult_min, self.capability_mult_max)
radius = self.default_agent_radius * random.uniform(self.capability_mult_min, self.capability_mult_max)
mass = self.default_agent_mass * random.uniform(self.capability_mult_min, self.capability_mult_max)
for i in range(self.n_agents):
if i == 0:
max_linear_vel = self.default_agent_max_linear_vel * 1.0
max_angular_vel = self.default_agent_max_angular_vel * 1.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0
else:
max_linear_vel = self.default_agent_max_linear_vel * 1.0
max_angular_vel = self.default_agent_max_angular_vel * 1.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0

capabilities.append([max_linear_vel, max_angular_vel, radius, mass])

Expand Down Expand Up @@ -139,11 +148,26 @@ def reset_world_at(self, env_index: int = None):
# only do this during batched resets!
if not env_index:
capabilities = [] # save capabilities for relative capabilities later
for agent in self.world.agents:
max_linear_vel = self.default_agent_max_linear_vel * random.uniform(self.capability_mult_min, self.capability_mult_max)
max_angular_vel = self.default_agent_max_angular_vel * random.uniform(self.capability_mult_min, self.capability_mult_max)
radius = self.default_agent_radius * random.uniform(self.capability_mult_min, self.capability_mult_max)
mass = self.default_agent_mass * random.uniform(self.capability_mult_min, self.capability_mult_max)
for i in range(self.n_agents):
agent = self.world.agents[i]

if i == 0:
if self.agent_0_failed:
max_linear_vel = self.default_agent_max_linear_vel * 0.0
max_angular_vel = self.default_agent_max_angular_vel * 0.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0
agent.color = (1.0, 0.0, 0.0)
else:
max_linear_vel = self.default_agent_max_linear_vel * 1.0
max_angular_vel = self.default_agent_max_angular_vel * 1.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0
else:
max_linear_vel = self.default_agent_max_linear_vel * 1.0
max_angular_vel = self.default_agent_max_angular_vel * 1.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0

capabilities.append([max_linear_vel, max_angular_vel, radius, mass])

Expand All @@ -168,7 +192,7 @@ def reset_world_at(self, env_index: int = None):
self.world,
env_index,
min_dist_between_entities=max(
package.shape.circumscribed_radius() + goal.shape.radius + 0.01
package.shape.circumscribed_radius() + goal.shape.radius + 1.0
for package in self.packages
),
x_bounds=(
Expand Down Expand Up @@ -283,6 +307,37 @@ def reward(self, agent: Agent):
distance <= self.min_collision_distance
] += self.interagent_collision_penalty

agent_0 = self.world.agents[0]
agent_1 = self.world.agents[1]
env_0_dist_to_pkg = torch.linalg.vector_norm(agent_0.state.pos - package.state.pos, dim=-1)[0]
print("dist to pkg", env_0_dist_to_pkg)
if env_0_dist_to_pkg < 1.2:
self.agent_0_failed = True

capabilities = [] # save capabilities for relative capabilities later
for i in range(self.n_agents):
agent = self.world.agents[i]

if i == 0:
max_linear_vel = self.default_agent_max_linear_vel * 0.0
max_angular_vel = self.default_agent_max_angular_vel * 0.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0
agent.color = (1.0, 0.0, 0.0)
else:
max_linear_vel = self.default_agent_max_linear_vel * 1.0
max_angular_vel = self.default_agent_max_angular_vel * 1.0
radius = self.default_agent_radius * 1.0
mass = self.default_agent_mass * 1.0

capabilities.append([max_linear_vel, max_angular_vel, radius, mass])

agent.u_multiplier=[max_linear_vel, max_angular_vel]
agent.shape=Sphere(radius)
agent.mass=mass

self.capabilities = torch.tensor(capabilities)

# reward for how close agents are to all packages
if self.add_dense_reward:
for i, package in enumerate(self.packages):
Expand Down Expand Up @@ -460,6 +515,7 @@ def default_observation(self, agent: Agent):
)

def observation(self, agent: Agent):
self.iter_ct += 1
if self.partial_observations:
return self.partial_observation(agent)
else:
Expand Down