-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils.py
394 lines (321 loc) · 13.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from e3nn import o3, nn
import torch
import math
import numpy as np
from math import pi
PI_div_2 = pi / 2.
from openfold_light import residue_constants
from openfold_light.residue_constants import (atom_types, residue_atoms, restype_3to1, restype_1to3, resnames, rigid_group_atom_positions)
from torch_scatter import scatter
from torch_cluster import radius_graph
def compose_rotations(R1, R2):
return torch.einsum("rij,rjk->rik", R1, R2)
def similarity_transform(R, R_update):
return torch.einsum("rij,rjk,rlk->ril", R_update, R, R_update)
def get_euclidean(pos):
# pos [N, 3, 3]
T = pos[:, 1]
v1 = pos[:, 0] - T
v2 = pos[:, 2] - T
R, _ = get_rot_6D(v1, v2)
return T, R
def compute_d_ijab(X, mask_atom, mask_amb, eps=1e-4):
"""
ij: CG index
ab: atom index
"""
with torch.no_grad():
d_ijab = ((X[:, None, :, None] - X[None, :, None, :]).square().sum(-1) + eps).sqrt()
# this mask tells which atoms are present
mask_atom_ijab = mask_atom[:, None, :, None] * mask_atom[None, :, None, :]
# this mask is 1 if "ia" is an ambiguous atom and "jb" is nonambiguous
mask_nonamb = 1 - mask_amb
# final mask
mask_ijab = mask_atom_ijab * mask_amb[:, None, :, None] * mask_nonamb[None, :, None, :]
return (d_ijab, mask_ijab)
def compute_d_ijab_pred(X, eps=1e-4):
"""
ij: CG index
ab: atom index
"""
with torch.no_grad():
d_ijab = ((X[:, None, :, None] - X[None, :, None, :]).square().sum(-1) + eps).sqrt()
return d_ijab
def compute_X_uv(mask, X_v, R_v, T_v, mask_atom,
X_v_alt, R_v_alt, T_v_alt, mask_atom_alt,
d_ijab, mask_ijab, d_ijab_alt, mask_ijab_alt,
d_ijab_pred):
d_i = (mask_ijab * (d_ijab - d_ijab_pred).abs()).sum(dim=[1, 2, 3])
d_i_alt = (mask_ijab_alt * (d_ijab_alt - d_ijab_pred).abs()).sum(dim=[1, 2, 3])
ialt = d_i > d_i_alt
# replace with alt
if ialt.sum() > 0:
X_v, R_v, T_v = X_v.clone(), R_v.clone(), T_v.clone() # TODO: make this more efficient
X_v[ialt], R_v[ialt], T_v[ialt] = X_v_alt[ialt], R_v_alt[ialt], T_v_alt[ialt]
# compute ground truth Xuv
with torch.no_grad():
X_uv = apply_inverse_euclidean_uv(X_v, R_v, T_v) # R_v, T_v = R_u, T_u
mask_u = mask.unsqueeze(1) # this is needed
mask_v = mask.unsqueeze(0)
mask_atom_v = mask_atom.unsqueeze(0)
mask_atom_uv = (mask_u * mask_v).unsqueeze(-1) * mask_atom_v
return X_uv, mask_atom_uv
def compute_X_v_pred(X0, R_pred_v, T_pred_v):
X_v_pred = apply_euclidean(X0, R_pred_v, T_pred_v)
return X_v_pred
def compute_X_uv_pred(X_v_pred, R_pred_u, T_pred_u):
X_uv_pred = apply_inverse_euclidean_uv(X_v_pred, R_pred_u, T_pred_u)
return X_uv_pred
def compute_FAPE_uv(X_uv, mask_atom_uv, X_uv_pred, eps=1e-4, d_max=10., Z=10.,
weights=None, return_count=False):
d_uv = ((X_uv - X_uv_pred).square().sum(-1) + eps).sqrt().clamp(max=d_max)
if weights is not None:
d_uv = weights.unsqueeze(-1) * d_uv
natom_pairs = (weights.unsqueeze(-1) * mask_atom_uv).sum()
else:
natom_pairs = mask_atom_uv.sum()
if not return_count:
loss = (d_uv * mask_atom_uv).sum() / natom_pairs / Z
return loss
else:
loss = (d_uv * mask_atom_uv).sum() / Z
return loss, natom_pairs
def apply_euclidean(x, R, T):
"""
R [num_nodes, 3, 3]
T [num_nodes, 3]
x [num_nodes, Na, 3]
"""
Rx = torch.einsum('rkl,rml->rmk', R, x)
return Rx + T.unsqueeze(1)
def apply_inverse_euclidean(x, R, T):
"""
R [num_nodes, 3, 3]
T [num_nodes, 3]
x [num_nodes, Na, 3]
"""
return torch.einsum('rlk,rml->rmk', R, x - T.unsqueeze(1))
def apply_inverse_euclidean_uv(x_v, R_u, T_u):
# x_v [N, Na, 3]
# R_u [N, 3, 3]
# T_u [N, 3]
# x_uv [N, N, Na, 3]
return torch.einsum('uvpq,uvkp->uvkq', R_u.unsqueeze(1), x_v.unsqueeze(0) - T_u[:, None, None, :])
def R_from_quaternion_u(u):
norm = (1 + u.square().sum(dim=1)).sqrt()
b, c, d = u.T / norm
a = 1 / norm
a2 = a.square()
b2 = b.square()
c2 = c.square()
d2 = d.square()
bc2 = 2*b*c
ad2 = 2*a*d
bd2 = 2*b*d
ac2 = 2*a*c
cd2 = 2*c*d
ab2 = 2*a*b
# R = [[a**2 + b**2 - c**2 - d**2, 2*b*c - 2*a*d, 2*b*d + 2*a*c],
# [2*b*c + 2*a*d, a**2 - b**2 + c**2 - d**2, 2*c*d - 2*a*b],
# [2*b*d - 2*a*c, 2*c*d + 2*a*b, a**2 - b**2 - c**2 + d**2]]
m12 = bc2 - ad2
m32 = cd2 + ab2
m22 = a2 - b2 + c2 - d2
m21 = bc2 + ad2
m23 = cd2 - ab2
R = torch.stack([torch.stack([a2 + b2 - c2 - d2, m12, bd2 + ac2], dim=1),
torch.stack([m21, m22, m23], dim=1),
torch.stack([bd2 - ac2, m32, a2 - b2 - c2 + d2], dim=1)],
dim=1)
return R
def get_euclidean_kabsch(pos, ref, pos_mask):
#pos [N,M,3]
#ref [N,M,3]
#pos_mask [N,M]
#N : number of examples
#M : number of atoms
# R,T maps local reference onto global pos
if pos_mask is None:
pos_mask = torch.ones(pos.shape[:2], device=pos.device)
else:
if pos_mask.shape[0] != pos.shape[0]:
raise ValueError("pos_mask should have same number of rows as number of input vectors.")
if pos_mask.shape[1] != pos.shape[1]:
raise ValueError("pos_mask should have same number of cols as number of input vector dimensions.")
if pos_mask.ndim != 2:
raise ValueError("pos_mask should be 2 dimensional.")
#Center point clouds
denom = torch.sum(pos_mask, dim=1, keepdim=True)
denom[denom==0] = 1.
pos_mu = torch.sum(pos * pos_mask[:,:,None], dim=1, keepdim=True) / denom[:,:,None]
ref_mu = torch.sum(ref * pos_mask[:,:,None], dim=1, keepdim=True) / denom[:,:,None]
pos_c = pos - pos_mu
ref_c = ref - ref_mu
#Covariance matrix
H = torch.einsum('bji,bjk->bik', ref_c, pos_mask[:,:,None] * pos_c)
U, S, Vh = torch.linalg.svd(H)
#Decide whether we need to correct rotation matrix to ensure right-handed coord system
locs = torch.linalg.det(U @ Vh) < 0
S[locs,-1] = -S[locs,-1]
U[locs,:,-1] = -U[locs,:,-1]
#Rotation matrix
R = torch.einsum('bji,bkj->bik',Vh,U)
#Translation vector
T = pos_mu - torch.einsum('bij,bkj->bki',R,ref_mu)
return T.squeeze(1), R
def quaternion_slerp2(R0, R1, t):
q0 = o3.matrix_to_quaternion(R0) # returns a unit q
q1 = o3.matrix_to_quaternion(R1)
dot = torch.bmm(q0[:,None],torch.transpose(q1[:,None],1,2)).squeeze()
q1[dot < 0.] = -q1[dot < 0.]
dot[dot < 0.] = -dot[dot < 0.]
dot = torch.clamp(dot, -1.0, 1.0)[:,None]
theta = torch.acos(dot)
qslerp = (q0*torch.sin((1-t)*theta) + q1*torch.sin(t*theta))/torch.sin(theta)
torch._assert(torch.all(torch.logical_or(theta==0,torch.remainder(theta, torch.pi/2)!=0)), "theta which is multiple of pi/2 needs to be handled in quaternion_slerp2");
torch._assert(torch.all(torch.logical_or(theta==0,torch.remainder(theta, torch.pi)!=0)), "At least one theta is multiple of pi in quaternion_slerp2");
#deal with very small angles, and sin(0)=0
for k,d in enumerate(dot):
if d > 0.999:
# print("performing linear interpolation")
qslerp[k] = q0[k] * (1-t) + q1[k] * t
return o3.quaternion_to_matrix(qslerp)
def quaternion_power2(q, t):
axis, angle = o3.quaternion_to_axis_angle(q)
exp_tlnq = torch.cat((torch.cos(t*angle/2)[:,None],torch.sin(t*angle[:,None]/2)*axis),1)
return exp_tlnq
def quaternion_slerp(R0, R1, t):
"""returns rotation matrix"""
q0 = o3.matrix_to_quaternion(R0) # returns a unit q
q1 = o3.matrix_to_quaternion(R1)
# https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp
# use the first formula
# q0(q0^-1q1)^t
q0_inv = o3.inverse_quaternion(q0)
# print(o3.compose_quaternion(q0, q0_inv))
q0_inv_q1 = o3.compose_quaternion(q0_inv, q1)
q0_inv_q1_to_t = quaternion_power2(q0_inv_q1, t)
# print(quaternion_norm(q0_inv_q1_to_t))
q = o3.compose_quaternion(q0, q0_inv_q1_to_t)
return o3.quaternion_to_matrix(q)
def compute_struct_loss(X, data, eps = 1e-6, return_full=False,
bond_tol_scale=1., apply_mask=False):
"""
X [natoms, 3]
data: single data instance
if return_full is True, then return full loss gathered by atoms
"""
dst_bonds_i1=data["dst_bonds_i1"]
dst_bonds_i2=data["dst_bonds_i2"]
dst_bonds_l=data["dst_bonds_l"]
dst_bonds_tol=data["dst_bonds_tol"]
dst_angles_i1=data["dst_angles_i1"]
dst_angles_i2=data["dst_angles_i2"]
dst_angles_i3=data["dst_angles_i3"]
dst_angles_mid=data["dst_angles_mid"]
dst_angles_tol=data["dst_angles_tol"]
dst_atom_widths=data["dst_atom_widths"]
dst_bonds_mask=data["dst_bonds_mask"]
if apply_mask:
dst_atom_mask=data["dst_atom_mask"]
# bond
l_pred = ((X[dst_bonds_i1] - X[dst_bonds_i2]).square().sum(-1) + eps).sqrt()
loss_bond = ((dst_bonds_l - l_pred).abs() - bond_tol_scale * dst_bonds_tol)
mask_bond = dst_bonds_mask # mask unambiguous
# mask missing atoms
if apply_mask:
mask_bond = mask_bond * dst_atom_mask[dst_bonds_i1] * dst_atom_mask[dst_bonds_i2]
loss_bond = loss_bond * mask_bond
loss_bond = loss_bond.clamp(min=0)
if return_full:
# symmeterize
loss_bond = scatter(loss_bond, dst_bonds_i1, dim=0, dim_size=len(X)) + scatter(loss_bond, dst_bonds_i2, dim=0, dim_size=len(X))
mask_bond = scatter(mask_bond, dst_bonds_i1, dim=0, dim_size=len(X)) + scatter(mask_bond, dst_bonds_i2, dim=0, dim_size=len(X))
loss_bond = loss_bond / mask_bond.clamp(min=1.)
else:
loss_bond = loss_bond.sum() / mask_bond.sum()
# angle; numerical stability?
v1 = X[dst_angles_i1] - X[dst_angles_i2]
v2 = X[dst_angles_i3] - X[dst_angles_i2]
norm = ((v1.square().sum(-1) + eps) * (v2.square().sum(-1) + eps)).sqrt()
cosa_pred = (v1 * v2).sum(-1) / norm
loss_angle = ((dst_angles_mid - cosa_pred).abs() - dst_angles_tol)
if apply_mask:
mask_angle = dst_atom_mask[dst_angles_i1] * dst_atom_mask[dst_angles_i2] * dst_atom_mask[dst_angles_i3]
loss_angle = loss_angle * mask_angle
norm_angle = mask_angle.sum()
else:
norm_angle = len(loss_angle)
loss_angle = loss_angle.clamp(min=0)
if return_full:
loss_angle = scatter(loss_angle, dst_angles_i2, dim=0, dim_size=len(X))
else:
loss_angle = loss_angle.sum() / norm_angle
# clash
d = ((X[:, None] - X[None, :]).square().sum(-1) + eps).sqrt()
d_min = dst_atom_widths[:, None] + dst_atom_widths[None, :]
clash_tol = 0.1 # previously, tried 1.5 and then 0.5
loss_clash = (d_min - d - clash_tol).clamp(min=0)
# exclude bonds
mask_clash = (d < 8.0).type(d_min.dtype) # only consider nearby
mask_clash[dst_bonds_i1, dst_bonds_i2] = 0.
mask_clash[dst_bonds_i2, dst_bonds_i1] = 0.
# mask self
mask_clash.fill_diagonal_(0.)
# mask missing
if apply_mask:
m = dst_atom_mask == 0 # want to mask out missing so set eq to zero
mask_clash[m, :] = 0
mask_clash[:, m] = 0
loss_clash = loss_clash * mask_clash
if not return_full:
loss_clash = loss_clash.sum() / mask_clash.sum()
else:
loss_clash = loss_clash.sum(dim=1)
mask_clash = mask_clash.sum(dim=1)
loss_clash = loss_clash / mask_clash.clamp(min=1.)
return loss_bond, loss_angle, loss_clash
def compute_x_pdb(X_v_pred, scatter_index, scatter_w, natoms):
X_pred_flat = X_v_pred.reshape(-1, 3) * scatter_w.reshape(-1, 1)
X_pred_pdb = scatter(X_pred_flat, scatter_index, dim=0, dim_size=natoms)
return X_pred_pdb
def compute_rmsd(x1, x2, niter=4, retain_frac=0.95, mask=None):
"""
x1, x2 [N, 3]; torch.Tensors
returns transformation that bring x1 to x2
mask applies symmetrically to both
"""
if retain_frac >= 1.:
niter = 1
retain_frac = 1.
x1_, x2_ = x1.clone(), x2.clone()
if mask is None:
mask = torch.ones(len(x1_), device=x1_.device)
mask_ = mask.clone()
for i in range(niter):
T, R = get_euclidean_kabsch(x2_.reshape(1, -1, 3), x1_.reshape(1, -1, 3), mask_.reshape(1, -1))
if i < niter - 1:
x1_shifted = torch.einsum("ij,rj->ri", R.squeeze(0), x1_) + T
d2 = (x2_ - x1_shifted).square().sum(-1)
d2_max = torch.quantile(d2, retain_frac)
isubset = (d2 < d2_max) & (mask_ == 1.)
x1_, x2_, mask_ = x1_[isubset], x2_[isubset], mask_[isubset]
# use the last to transform x1
x1_shifted = torch.einsum("ij,rj->ri", R.squeeze(0), x1) + T
d2 = (x2 - x1_shifted).square().sum(-1)
d2_max = torch.quantile(d2, retain_frac)
isubset = (d2 < d2_max) & (mask == 1.)
rmsd = ((x2[isubset] - x1_shifted[isubset]).square().sum() / isubset.sum()).sqrt()
return x1_shifted, R.squeeze(0), T.squeeze(0), rmsd
# from prettytable import PrettyTable
def count_parameters(model):
table = PrettyTable(["Modules", "Parameters"])
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad: continue
params = parameter.numel()
table.add_row([name, params])
total_params+=params
print(table)
print(f"Total Trainable Params: {total_params}")
return total_params