forked from JavClaude/Sentiment-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Javclaude
committed
May 31, 2020
1 parent
39ffe0c
commit c88e0b9
Showing
1 changed file
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
import os | ||
import argparse | ||
import logging | ||
|
||
logger = logging.getLogger(__name__) | ||
logger.setLevel(logging.INFO) | ||
|
||
import pandas as pd | ||
import torch | ||
import progressbar | ||
|
||
from utils import * | ||
from model import LSTMModel | ||
|
||
from sklearn.metrics import f1_score | ||
|
||
def main(path_to_data: str, | ||
texts_col: str, | ||
labels_col: str, | ||
n_classes: int, | ||
batch_size: int, | ||
batch_size_eval: int, | ||
min_lr: int, | ||
max_lr: int, | ||
n_epochs: int, | ||
cuda: int = 0): | ||
''' | ||
''' | ||
df = pd.read_csv(path_to_data) | ||
|
||
# Preprocess | ||
optimal_length = get_length(df, texts_col) | ||
X, vocab_size = encode_texts(df, texts_col, max_seq_length=optimal_length, return_vocab_size=True) | ||
|
||
y = get_labels(df, labels_col) | ||
|
||
train_loader, test_loader = create_TorchLoaders(X, y, test_size=0.10, batch_size=batch_size, batch_size_eval=batch_size_eval) | ||
|
||
Model = LSTMModel( | ||
vocab_size=vocab_size, | ||
n_classes=2 | ||
) | ||
|
||
if n_classes > 2: | ||
criterion = torch.nn.CrossEntropyLoss() | ||
else: | ||
criterion = torch.nn.BCEWithLogitsLoss() | ||
|
||
optim = torch.optim.Adam(Model.parameters()) | ||
|
||
## Heuristic | ||
opt_cycle = ((((len(X)*(1-0.10))/batch_size)*n_epochs)*0.25)/2 | ||
|
||
schedul = torch.optim.lr_scheduler.CyclicLR(optim, | ||
min_lr, | ||
max_lr, | ||
step_size_up=opt_cycle, | ||
step_size_down=opt_cycle, | ||
mode="exp_range", | ||
cycle_momentum=False) | ||
|
||
if cuda==1: | ||
Model.cuda() | ||
device = "cuda" | ||
else: | ||
device = "cpu" | ||
|
||
metrics = { | ||
"training_loss" : [], | ||
"eval_loss " : [], | ||
"training_f1" : [], | ||
"eval_f1" : [] | ||
} | ||
|
||
logger.info("Starting training for {} epochs".format(n_epochs)) | ||
|
||
for epoch in range(n_epochs): | ||
Model.train() | ||
progress = progressbar.ProgressBar() | ||
for batch in progress(train_loader): | ||
batch = tuple(t for t in batch) | ||
|
||
inputs, labels = batch #unpacking | ||
inputs = inputs.to(device, dtype=torch.long) | ||
labels = labels.to(device, dtype=torch.float) | ||
|
||
preds = Model(inputs) | ||
|
||
loss = criterion(preds, labels) | ||
|
||
## Metrics computation | ||
|
||
|
||
metrics["training_loss"].append(loss.item()) | ||
|
||
tmp_f1 = f1_score(labels.to("cpu").numpy(), preds.to("cpu").numpy()) | ||
|
||
metrics["training_f1"].append(tmp_f1) | ||
|
||
## Backward pass ## | ||
loss.backward() | ||
|
||
optim.step() #Gradient descent | ||
schedul.step() | ||
Model.zero_grad() | ||
|
||
logger.info("Epoch {} done with: training loss: {}\n training f1: {}".format(epoch, loss.item(), tmp_f1)) | ||
|
||
## Eval | ||
progress = progressbar.ProgressBar() | ||
Model.eval() | ||
for batch in progress(test_loader): | ||
with torch.no_grad(): #computationaly efficient | ||
batch = tuple(t for t in batch) | ||
|
||
inputs, labels = batch | ||
inputs = inputs.to(device, dtype=torch.long) | ||
labels = labels.to(device, dtype=torch.float) | ||
|
||
preds = Model(inputs) | ||
|
||
eval_loss = criterion(preds, labels) | ||
|
||
## Eval metrics | ||
metrics["eval_loss"].append(eval_loss.item()) | ||
|
||
tmp_f1 = f1_score(labels.to("cpu").numpy(), preds.to("cpu").numpy()) ## detach | ||
|
||
metrics["eval_f1"].append(tmp_f1) | ||
|
||
logger.info("Evaluation at iteration {} done: eval loss: {}\n eval f1: {}".format(epoch, eval_loss.item(), tmp_f1)) | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("--data_path", help="path to the data directory", type=str) | ||
parser.add_argument("--texts_col", help="name of the column containing textual data", type=str) | ||
parser.add_argument("--labels_col", help="name of the column containing labels", type=str) | ||
parser.add_argument("--n_classes", type=int) | ||
parser.add_argument("--batch_size", type=int, default=16) | ||
parser.add_argument("--batch_size_eval", type=int, default=64) | ||
parser.add_argument("--min_lr", type=float, default=0.00001) | ||
parser.add_argument("--max_lr", type=float, default=0.001) | ||
parser.add_argument("--n_epochs", type=int, default=10) | ||
parser.add_argument("--cuda", type=int, default=0) | ||
|
||
args = parser.parse_args() | ||
|
||
main( | ||
path_to_data = args.data_path, | ||
texts_col = args.texts_col, | ||
labels_col = args.labels_col, | ||
n_classes = args.n_classes, | ||
batch_size = args.batch_size, | ||
batch_size_eval=args.batch_size_eval, | ||
min_lr = args.min_lr, | ||
max_lr = args.max_lr, | ||
n_epochs = args.n_epochs, | ||
cuda = args.cuda | ||
) |