Skip to content

Commit

Permalink
[Feature] Support for full-scale fine-tuning of large language models…
Browse files Browse the repository at this point in the history
… such as Llama2 70B. (#231)

* support deepspeed zero init

* add throughput hook

* support multi processes when mapping datasets

* Add strategy registy

* save hf deepspeed config as an attribute

* DeepSpeed version requirements
  • Loading branch information
HIT-cwh authored Nov 17, 2023
1 parent 9f686f0 commit 7975d07
Show file tree
Hide file tree
Showing 15 changed files with 339 additions and 35 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE

Expand Down Expand Up @@ -118,7 +118,8 @@
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
template_map_fn_factory)
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE

Expand Down Expand Up @@ -136,7 +136,8 @@
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import (alpaca_map_fn, alpaca_zh_map_fn,
oasst1_map_fn, template_map_fn_factory)
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE

Expand Down Expand Up @@ -149,7 +149,8 @@
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_zh_map_fn, template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE

Expand Down Expand Up @@ -118,7 +118,8 @@
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE

Expand Down Expand Up @@ -119,7 +119,8 @@
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
Expand Down
163 changes: 163 additions & 0 deletions xtuner/configs/llama/llama2_70b/llama2_70b_full_wizardlm_e1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
# Copyright (c) OpenMMLab. All rights reserved.
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
from torch.optim import AdamW
from transformers import AutoModelForCausalLM, AutoTokenizer

from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory, wizardlm_map_fn
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE

#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = 'meta-llama/Llama-2-70b-hf'

# Data
data_path = 'WizardLM/WizardLM_evol_instruct_V2_196k'
prompt_template = PROMPT_TEMPLATE.llama2_chat
max_length = 2048
pack_to_max_length = True

# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 4 # 1bs * 4acc * 32gpu = 128 batchsize
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-5
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip

# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = ''
evaluation_inputs = [
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
]

#######################################################################
# PART 2 Model & Tokenizer #q
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')

model = dict(
type=SupervisedFinetune,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True))

#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path=data_path),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=wizardlm_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)

train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))

#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
)

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = dict(
type=CosineAnnealingLR,
eta_min=lr * 0.1,
by_epoch=True,
T_max=max_epochs,
convert_to_iter_based=True)

# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)

#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
5 changes: 3 additions & 2 deletions xtuner/configs/llama/llama2_7b/llama2_7b_full_wizardlm_e1.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory, wizardlm_map_fn
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.engine import DatasetInfoHook, EvaluateChatHook, ThroughputHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE

Expand Down Expand Up @@ -119,7 +119,8 @@
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
prompt_template=prompt_template),
dict(type=ThroughputHook)
]

# configure default hooks
Expand Down
50 changes: 34 additions & 16 deletions xtuner/dataset/huggingface.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,23 +6,25 @@
from datasets import DatasetDict
from mmengine import print_log
from mmengine.config import Config, ConfigDict
from torch import distributed as dist

from xtuner.registry import BUILDER, MAP_FUNC
from .utils import Packer, encode_fn


def process_hf_dataset(dataset,
tokenizer,
max_length,
dataset_map_fn=None,
template_map_fn=None,
max_dataset_length=None,
split='train',
remove_unused_columns=False,
rename_maps=[],
shuffle_before_pack=True,
pack_to_max_length=True,
input_ids_with_output=True):
def process(dataset,
tokenizer,
max_length,
dataset_map_fn=None,
template_map_fn=None,
max_dataset_length=None,
split='train',
remove_unused_columns=False,
rename_maps=[],
shuffle_before_pack=True,
pack_to_max_length=True,
input_ids_with_output=True,
map_num_proc=32):
"""Post-process the dataset loaded from the Hugging Face Hub, or a local
dataset.
Expand Down Expand Up @@ -51,6 +53,7 @@ def process_hf_dataset(dataset,
input_ids_with_output: Whether to put the groundtruth output
corresponding to the question into the dataset. Typically set
it to True during training and False during testing.
map_num_proc: Max number of processes when mapping the dataset.
"""

if isinstance(dataset, DatasetDict):
Expand All @@ -74,15 +77,15 @@ def process_hf_dataset(dataset,
if isinstance(dataset_map_fn, str):
dataset_map_fn = MAP_FUNC.get(dataset_map_fn)

dataset = dataset.map(dataset_map_fn)
dataset = dataset.map(dataset_map_fn, num_proc=map_num_proc)

# Add prompt template, such as <|System|>: xxx <|User|>: xxx <|Bot|>: xxx
if template_map_fn is not None:
if isinstance(template_map_fn, dict) or isinstance(
template_map_fn, Config) or isinstance(template_map_fn,
ConfigDict):
template_map_fn = BUILDER.build(template_map_fn)
dataset = dataset.map(template_map_fn)
dataset = dataset.map(template_map_fn, num_proc=map_num_proc)

for old, new in rename_maps:
dataset = dataset.rename_column(old, new)
Expand Down Expand Up @@ -110,13 +113,28 @@ def process_hf_dataset(dataset,
max_length=max_length,
input_ids_with_output=input_ids_with_output),
remove_columns=list(dataset.column_names)
if remove_unused_columns else None)
if remove_unused_columns else None,
num_proc=map_num_proc)

# pack to max length
if pack_to_max_length and split == 'train':
if shuffle_before_pack:
dataset = dataset.shuffle()
dataset = dataset.flatten_indices()
dataset = dataset.map(Packer(max_length), batched=True)
dataset = dataset.map(
Packer(max_length), batched=True, num_proc=map_num_proc)

return dataset


def process_hf_dataset(*args, **kwargs):
if not (dist.is_available() and dist.is_initialized()):
return process(*args, **kwargs)

if dist.get_rank() == 0:
dataset = process(*args, **kwargs)
objects = [dataset]
else:
objects = [None]
dist.broadcast_object_list(objects, src=0)
return objects[0]
8 changes: 6 additions & 2 deletions xtuner/engine/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,8 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .hooks import DatasetInfoHook, EvaluateChatHook
from ._strategy import DeepSpeedStrategy
from .hooks import DatasetInfoHook, EvaluateChatHook, ThroughputHook

__all__ = ['EvaluateChatHook', 'DatasetInfoHook']
__all__ = [
'EvaluateChatHook', 'DatasetInfoHook', 'ThroughputHook',
'DeepSpeedStrategy'
]
4 changes: 4 additions & 0 deletions xtuner/engine/_strategy/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .deepspeed import DeepSpeedStrategy

__all__ = ['DeepSpeedStrategy']
Loading

0 comments on commit 7975d07

Please sign in to comment.