-
Notifications
You must be signed in to change notification settings - Fork 0
/
drive.py
164 lines (147 loc) · 4.4 KB
/
drive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import io
import glob
import time
import threading
import picamera
import picamera.array
from PIL import Image
import numpy as np
from carControl import carControl
from keras.models import load_model
import tensorflow as tf
def get_max_prob_num(predictions_array):
"""to get the integer of predition, instead of digit number"""
prediction_edit = np.zeros([1,6])
for i in range(0,6):
if predictions_array[0][i] == predictions_array.max():
prediction_edit[0][i] = 1
return i
return 1
def control_car(action_num):
"""out put the char and call car_control(we used before)"""
if action_num == 3:
print("Left")
car_control.carTurnLeft()
time.sleep(0.25)
elif action_num== 4:
print("Right")
car_control.carTurnRight()
time.sleep(0.25)
elif action_num == 1:
car_control.carMoveForward()
print('Forward')
elif action_num == 2:
car_control.carMoveBackward()
print('Backward')
else:
car_control.cleanGPIO()
print('Stop')
class ImageProcessor(threading.Thread):
def __init__(self, owner):
super(ImageProcessor, self).__init__()
self.stream = io.BytesIO()
self.event = threading.Event()
self.terminated = False
self.owner = owner
self.start()
def run(self):
global latest_time, model, graph
# This method runs in a separate thread
while not self.terminated:
# Wait for an image to be written to the stream
if self.event.wait(1):
try:
self.stream.seek(0)
# Read the image and do some processing on it
image = Image.open(self.stream)
image_np = np.array(image)
camera_data_array = np.expand_dims(image_np,axis = 0)
current_time = time.time()
if current_time>latest_time:
if current_time-latest_time>1:
print("*" * 30)
print(current_time-latest_time)
print("*" * 30)
latest_time = current_time
with graph.as_default():
predictions_array = model.predict(camera_data_array, batch_size=20, verbose=1)
print(predictions_array)
action_num = get_max_prob_num(predictions_array)
control_car(action_num)
# Uncomment this line if you want to save images with prediction as name
# Warning: This will cause latency sometimes.
# image.save('%s_image%s.jpg' % (action_num,time.time()))
finally:
# Reset the stream and event
self.stream.seek(0)
self.stream.truncate()
self.event.clear()
# Return ourselves to the available pool
with self.owner.lock:
self.owner.pool.append(self)
class ProcessOutput(object):
def __init__(self):
self.done = False
# Construct a pool of 4 image processors along with a lock
# to control access between threads
self.lock = threading.Lock()
self.pool = [ImageProcessor(self) for i in range(4)]
self.processor = None
def write(self, buf):
if buf.startswith(b'\xff\xd8'):
# New frame; set the current processor going and grab
# a spare one
if self.processor:
self.processor.event.set()
with self.lock:
if self.pool:
self.processor = self.pool.pop()
else:
# No processor's available, we'll have to skip
# this frame; you may want to print a warning
# here to see whether you hit this case
self.processor = None
if self.processor:
self.processor.stream.write(buf)
def flush(self):
# When told to flush (this indicates end of recording), shut
# down in an orderly fashion. First, add the current processor
# back to the pool
if self.processor:
with self.lock:
self.pool.append(self.processor)
self.processor = None
# Now, empty the pool, joining each thread as we go
while True:
with self.lock:
try:
proc = self.pool.pop()
except IndexError:
pass # pool is empty
proc.terminated = True
proc.join()
def main():
"""get data, then predict the data, edited data, then control the car"""
global model, graph,car_control
car_control = carControl()
model_loaded = glob.glob('model/*.h5')
for single_mod in model_loaded:
model = load_model(single_mod)
graph = tf.get_default_graph()
try:
with picamera.PiCamera(resolution=(160,120)) as camera:
# uncomment this line and the camera images will be upside down
# camera.vflip = True
time.sleep(2)
output = ProcessOutput()
camera.start_recording(output, format='mjpeg')
while not output.done:
camera.wait_recording(1)
camera.stop_recording()
finally:
car_control.cleanGPIO()
if __name__ == '__main__':
global latest_time
latest_time = time.time()
main()