Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 43 additions & 9 deletions main_test_swinir.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,9 @@
from models.network_swinir import SwinIR as net
from utils import util_calculate_psnr_ssim as util

def dbg(tag, arr):
print(f'{tag}: shape={arr.shape}, dtype={arr.dtype}, '
f'range=({arr.min():.3f}, {arr.max():.3f})')

def main():
parser = argparse.ArgumentParser()
Expand All @@ -24,10 +27,13 @@ def main():
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
parser.add_argument('--model_path', type=str,
default='model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth')

parser.add_argument('--endoscope_data', type=bool, default=True, help='use endoscope data, which you need to pass in LR and HR folder where image with same name will be paired')
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder')
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
parser.add_argument('--save_dir', type=str, default=None, help='output directory')
args = parser.parse_args()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Expand All @@ -47,6 +53,9 @@ def main():

# setup folder and path
folder, save_dir, border, window_size = setup(args)
if args.endoscope_data:
hq_folder = folder[1]
folder = folder[0]
os.makedirs(save_dir, exist_ok=True)
test_results = OrderedDict()
test_results['psnr'] = []
Expand All @@ -59,14 +68,25 @@ def main():

for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
# read image
imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
if not args.endoscope_data:
imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
else:
imgname = path.split('/')[-1]
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
if args.folder_gt:
img_gt_path = os.path.join(hq_folder, imgname)
if os.path.exists(img_gt_path):
img_gt = cv2.imread(img_gt_path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
else:
img_gt = None

img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB

# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
Expand Down Expand Up @@ -194,31 +214,45 @@ def define_model(args):

def setup(args):
# 001 classical image sr/ 002 lightweight image sr
save_dir = args.save_dir
if args.task in ['classical_sr', 'lightweight_sr']:
save_dir = f'results/swinir_{args.task}_x{args.scale}'
folder = args.folder_gt
if not args.save_dir:
save_dir = f'results/swinir_{args.task}_x{args.scale}'
if args.endoscope_data:
folder = [args.folder_lq, args.folder_gt]
else:
folder = args.folder_gt
border = args.scale
window_size = 8

# 003 real-world image sr
elif args.task in ['real_sr']:
save_dir = f'results/swinir_{args.task}_x{args.scale}'
if not args.save_dir:
save_dir = f'results/swinir_{args.task}_x{args.scale}'
if args.large_model:
save_dir += '_large'
folder = args.folder_lq
if args.endoscope_data:
folder = [args.folder_lq, args.folder_gt]
else:
folder = args.folder_lq
border = 0
window_size = 8

# 004 grayscale image denoising/ 005 color image denoising
elif args.task in ['gray_dn', 'color_dn']:
save_dir = f'results/swinir_{args.task}_noise{args.noise}'
folder = args.folder_gt
if not args.save_dir:
save_dir = f'results/swinir_{args.task}_noise{args.noise}'
if args.endoscope_data:
folder = [args.folder_lq, args.folder_gt]
else:
folder = args.folder_gt
border = 0
window_size = 8

# 006 JPEG compression artifact reduction
elif args.task in ['jpeg_car', 'color_jpeg_car']:
save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}'
if not args.save_dir:
save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}'
folder = args.folder_gt
border = 0
window_size = 7
Expand Down