Skip to content

Jintao-Huang/EfficientDet_PyTorch

Repository files navigation

EfficientDet_PyTorch

注意事项(NOTICE):

  1. 训练请使用SGD优化器(with momentum 0.9). 不要使用Adam. 会造成不收敛.
    Use SGD optimizer for training(with momentum 0.9). Do not use Adam. It will cause a nonconvergence

  2. 有两个分支(branch),一个是按照论文书写(official)、一个是参考zylo117的代码(master), 并使用了他的预训练模型书写(万分感谢),请按实际情况选择
    There are two branches, one(official) was written according to the paper, the other(master) was written referring to the code of 'Zylo117' and use his pre-training model(thank you very much), please choose according to the actual situation

  3. train_example.py 的意义是展示模型输入的格式
    The meaning of train_example.py is to show the format of the model input

  4. 自己训练的时候,请使用EfficientNet预训练模型(推荐使用official)
    Use 'EfficientNet' pre-training model when you train yourself (Official is recommended)

Reference

  1. 论文(paper):
    https://arxiv.org/pdf/1911.09070.pdf

  2. 代码参考(reference code):
    https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

  3. EfficientNet 主干网代码来源(Backbone code source):
    https://github.com/Jintao-Huang/EfficientNet_PyTorch

  4. 预训练模型来自(The pre-training model comes from):
    https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
    因为修改了模型,所以我把预训练模型的state_dict进行了重组,并进行发布
    (Because I changed the model, I reorganized the state_dict for the pretraining model and release it)

  5. VOC0712 数据集链接
    链接:https://pan.baidu.com/s/17iop7UBnSGExW64cip-pYw
    提取码:sdvx

权重见 release. 或在百度云中下载:
链接:https://pan.baidu.com/s/1VrO0eBmSHlB8_haEJ7WbuA
提取码:2kq9

使用方式(How to use)

1. 预测图片(Predict images)

python3 pred_image.py

2. 预测视频(Predict video)

python3 pred_video.py

3. 简单的训练案例(Simple training cases)

python3 train_example.py

4. 训练

python3 make_dataset.py
python3 train.py

性能

如果打不开可在images/docs/文件夹中查看

性能

d0效果

原图片

检测图片

运行环境(environment)

torch 1.7.1
torchvision 0.8.2