-
-
Notifications
You must be signed in to change notification settings - Fork 111
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added first Independent Q Learning experiment
- Loading branch information
Showing
1 changed file
with
96 additions
and
0 deletions.
There are no files selected for viewing
96 changes: 96 additions & 0 deletions
96
src/ReinforcementLearningExperiments/src/experiments/MARL/IDQN_TicTacToe.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# --- | ||
# title: JuliaRL\_IDQN\_TicTacToe | ||
# cover: | ||
# description: IDQN applied to TicTacToe competitive | ||
# date: 2023-07-03 | ||
# author: "[Panajiotis Keßler](mailto:[email protected])" | ||
# --- | ||
|
||
using StableRNGs | ||
using ReinforcementLearning | ||
using ReinforcementLearningBase | ||
using ReinforcementLearningZoo | ||
using ReinforcementLearningCore | ||
using Plots | ||
using Flux | ||
using Flux.Losses: huber_loss | ||
using Flux: glorot_uniform | ||
|
||
using ProgressMeter | ||
|
||
|
||
rng = StableRNG(1234) | ||
|
||
cap = 100 | ||
|
||
RLCore.forward(L::DQNLearner, state::A) where {A <: Real} = RLCore.forward(L, [state]) | ||
|
||
create_policy() = QBasedPolicy( | ||
learner=DQNLearner( | ||
approximator=Approximator( | ||
model=TwinNetwork( | ||
Chain( | ||
Dense(1, 512, relu; init=glorot_uniform(rng)), | ||
Dense(512, 256, relu; init=glorot_uniform(rng)), | ||
Dense(256, 9; init=glorot_uniform(rng)), | ||
); | ||
sync_freq=100 | ||
), | ||
optimiser=ADAM(), | ||
), | ||
n=32, | ||
γ=0.99f0, | ||
is_enable_double_DQN=true, | ||
loss_func=huber_loss, | ||
rng=rng, | ||
), | ||
explorer=EpsilonGreedyExplorer( | ||
kind=:exp, | ||
ϵ_stable=0.01, | ||
decay_steps=500, | ||
rng=rng, | ||
), | ||
) | ||
|
||
e = TicTacToeEnv(); | ||
m = MultiAgentPolicy(NamedTuple((player => | ||
Agent(player != :Cross ? create_policy() : RandomPolicy(;rng=rng), | ||
Trajectory( | ||
container=CircularArraySARTTraces( | ||
capacity=cap, | ||
state=Integer => (1,), | ||
), | ||
sampler=NStepBatchSampler{SS′ART}( | ||
n=1, | ||
γ=0.99f0, | ||
batch_size=1, | ||
rng=rng | ||
), | ||
controller=InsertSampleRatioController( | ||
threshold=1, | ||
n_inserted=0 | ||
)) | ||
) | ||
for player in players(e))) | ||
); | ||
hooks = MultiAgentHook(NamedTuple((p => TotalRewardPerEpisode() for p ∈ players(e)))) | ||
|
||
episodes_per_step = 25 | ||
win_rates = (Cross=Float64[], Nought=Float64[]) | ||
@showprogress for i ∈ 1:2 | ||
run(m, e, StopAfterEpisode(episodes_per_step; is_show_progress=false), hooks) | ||
wr_cross = sum(hooks[:Cross].rewards)/(i*episodes_per_step) | ||
wr_nought = sum(hooks[:Nought].rewards)/(i*episodes_per_step) | ||
push!(win_rates[:Cross], wr_cross) | ||
push!(win_rates[:Nought], wr_nought) | ||
end | ||
p1 = plot([win_rates[:Cross] win_rates[:Nought]], labels=["Cross" "Nought"]) | ||
xlabel!("Iteration steps of $episodes_per_step episodes") | ||
ylabel!("Win rate of the player") | ||
|
||
p2 = plot([hooks[:Cross].rewards hooks[:Nought].rewards], labels=["Cross" "Nought"]) | ||
xlabel!("Overall episodes") | ||
ylabel!("Rewards of the players") | ||
|
||
p = plot(p1, p2, layout=(2,1), size=[1000,1000]) | ||
savefig("TTT_CROSS_DQN_NOUGHT_RANDOM.png") |