Skip to content

Latest commit

 

History

History

llava

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

LLaVA

1. 模型介绍

LLaVA 是基于大规模语言模型 llama 的视觉语言模型。支持多个多模态任务,包括零样本图像描述生成(Zero-shot Image Caption)、视觉问答(VQA)、细粒度视觉定位(Referring Expression Comprehension)等任务。

其性能优于其他模型,在多个任务上取得了更好的效果。

注:图片引用自LLaVA.

本仓库提供paddle版本的Llava-v1.5-7b、Llava-v1.5-13b、Llava-v1.6-7b以及预训练所用的vicuna-13b-v1.5模型。

2 环境准备

  • python >= 3.8
  • paddlenlp >= 2.7

3 快速开始

完成环境准备后,我们提供多轮对话示例:

多轮对话启动

# llava
python paddlemix/examples/llava/run_predict_multiround.py \
--model-path "paddlemix/llava/llava-v1.5-7b" \
--image-file "https://bj.bcebos.com/v1/paddlenlp/models/community/GroundingDino/000000004505.jpg" \

可配置参数说明:

  • model-path: 指定llava系列的模型名字或权重路径 ,支持 'paddlemix/llava/llava-v1.5-7b','paddlemix/llava/llava-v1.5-13b','paddlemix/llava/llava-v1.6-vicuna-7b'
  • image-flie :输入图片路径或url,默认None。

输入图片:

USER: 描述这张照片
ASSISTANT: 这是一个照片,展示了一辆红色公交车在街道上行驶。车辆正在行驶在一个狭窄的道路上,周围有一些汽车和树木。车辆的前部有一个路灯,并且还有一个路灯在车辆的右侧。
USER: 给出公交车位置的坐标
ASSISTANT: 0.23, 0.33, 0.79, 0.78

4 预训练

我们提供pretrain.py脚本,用于预训练llava模型。

4.1 数据准备

将自己的数据放到一个列表中并存入json文件中,示例如下,或参考llava_train_part_examples

[
    {
        "image": "http://ecx.images-amazon.com/images/I/51ntbts0gmL.jpg",
        "conversations": [
            [
                "<image>\nWhat is the genre of this book?",
                "Literature & Fiction"
            ]

        ]
    },
    {
        "image": "http://ecx.images-amazon.com/images/I/51cc3XrLevL.jpg",
        "conversations": [
            [
                "<image>\nWhat is the title of this book?",
                "Beyond Bigger Leaner Stronger: The Advanced Guide to Building Muscle, Staying Lean, and Getting Strong (The Build Muscle, Get Lean, and Stay Healthy Series)"
            ]
        ]
    },
    {
        "image": "http://ecx.images-amazon.com/images/I/517lfifp%2BqL.jpg",
        "conversations": [
            [
                "<image>\nIs this a romantic book?",
                "No"
            ]
        ]
    }
]

其中,"image"可以是本地的图片或网络地址;“conversations”是对话列表,每个对话包含两个元素,第一个为用户输入,第二个为系统回复,用户输入中的<image>表示输入图片,在预处理时会被替换为空。

4.2 预训练

预训练时使用paddlemix/examples/llava/pretrain.py程序进行训练,并使用paddlemix/config/llava/pretrain.json进行参数配置,训练前请先检查数据集路径,如果使用url,请确保环境网络正常

预训练命令:

python paddlemix/examples/llava/pretrain.py paddlemix/config/llava/pretrain.json

5 模型微调

Llava 基于 PaddleMIX tool 统一微调工具链,支持全参数、lora微调,数据准备及参数配置等可参考 tools

# llava lora微调
python paddlemix/tools/supervised_finetune.py paddlemix/config/llava/v1_5/lora_sft_argument.json

# llava full参数微调
python paddlemix/tools/supervised_finetune.py paddlemix/config/llava/v1_5/sft_argument.json

5 NPU硬件训练

请参照tools进行NPU硬件Paddle安装和环境变量设置,配置完成后可直接执行微调命令进行训练或预测。

参考文献

@misc{liu2024llavanext,
    title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
    url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
    author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
    month={January},
    year={2024}
}

@misc{liu2023improvedllava,
      title={Improved Baselines with Visual Instruction Tuning},
      author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
      publisher={arXiv:2310.03744},
      year={2023},
}

@misc{liu2023llava,
      title={Visual Instruction Tuning},
      author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
      publisher={NeurIPS},
      year={2023},
}