Skip to content

Kake27/sentisense

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🎯 SentiSense – Comment Sentiment Analyzer & Insights Engine

SentiSense is a full-stack sentiment analysis web application that scrapes comments from platforms like YouTube and Reddit, analyzes them using a custom-trained BiLSTM model, and offers meaningful insights, including visual sentiment trends, clustering, and AI-powered suggestions via Gemini API.


🚀 Features

  • 🔎 Multi-platform scraping (Reddit, YouTube)
  • 💡 Custom sentiment analysis model (.h5 + tokenizer .pkl)
  • 📊 Sentiment trend graphs and clustering
  • 🤖 AI-generated suggestions (via Gemini API)
  • 📁 CSV export of analyzed results
  • 💻 Built with FastAPI + TensorFlow + HuggingFace + Pandas

🧠 Tech Stack

Layer Tech Used
Frontend React.js, axios
Backend FastAPI, Uvicorn
Modeling TensorFlow (Keras), Tokenizer, HuggingFace Transformers
Scraping yt-dlp (Youtube) and praw (Reddit)
AI Assist Gemini API (LLM)
Infra OnRender / Localhost

⚙️ Installation & Usage

1) Clone the repo:

   git clone https://github.com/Kake27/sentisense
   cd sentisense

2) Create the virtual environment:

   python -m venv venv
   venv\Scripts\activate

3) Install dependencies:

   cd backend
   python -m venv venv
   venv\Scripts\activate
   pip install -r requirements.txt

4) Add .env variables:

   Get your client id, client secret by registering an app on Reddit and add them to the file
   Also add your GenAI API key 

5) Run the backend server:

   uvicorn runserver:app --reload

6) Install frontend dependencies:

   cd ../frontend
   npm install

7) Run frontend server:

   npm run dev

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages