Skip to content

Commit

Permalink
Simplified arc line centroiding.
Browse files Browse the repository at this point in the history
  • Loading branch information
cmccully committed Nov 18, 2024
1 parent 42a3fd5 commit e8ca8df
Show file tree
Hide file tree
Showing 3 changed files with 23 additions and 21 deletions.
5 changes: 5 additions & 0 deletions CHANGES.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,8 @@
0.11.2 (2024-11-18)
-------------------
- Simplified the fitting for refining the peak centers. We no longer try to fit them all simultaneously
- Updated the used the line list to remove a less isolated arc line

0.11.1 (2024-11-12)
-------------------
- Fixes to the quality of the reductions
Expand Down
11 changes: 5 additions & 6 deletions banzai_floyds/arc_lines.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,12 +56,6 @@
'line_source': 'ArI',
'line_notes': ''
},
{
'wavelength': 7948.1764,
'line_strength': 0.272,
'line_source': 'ArI',
'line_notes': ''
},
{
'wavelength': 8264.5225,
'line_strength': 0.355,
Expand Down Expand Up @@ -277,6 +271,11 @@
'line_strength': 0.3542,
'line_source': 'ArI',
'line_notes': 'Blend'
}, {
'wavelength': 7948.1764,
'line_strength': 0.272,
'line_source': 'ArI',
'line_notes': ''
}, {
'wavelength': 8006.1567,
'line_strength': 'nan',
Expand Down
28 changes: 13 additions & 15 deletions banzai_floyds/wavelengths.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,9 +105,7 @@ def identify_peaks(data, error, line_fwhm, line_sep, domain=None, snr_threshold=


def centroiding_weights(theta, x, line_sigma):
n_lines = len(theta) // 2
centers = theta[:n_lines]
strengths = theta[n_lines:]
center = theta[0]

# Originally we just used the gaussian, but we really need the gaussian integrated over pixels
# which is what this is. This should be more numerically stable without being too much slower
Expand All @@ -120,12 +118,9 @@ def centroiding_weights(theta, x, line_sigma):
lower_pixel_limits[1:] = (x[:-1] + x[1:]) / 2.0
lower_pixel_limits[0] = x[0] - (lower_pixel_limits[1] - x[0])

weights = np.zeros(len(x))
for center, strength in zip(centers, strengths):
integrated_gauss = -erf((-upper_pixel_limits + center) / (np.sqrt(2) * line_sigma))
integrated_gauss += erf((center - lower_pixel_limits) / (np.sqrt(2) * line_sigma))
integrated_gauss /= 2.0
weights += integrated_gauss * strength
weights = -erf((-upper_pixel_limits + center) / (np.sqrt(2) * line_sigma))
weights += erf((center - lower_pixel_limits) / (np.sqrt(2) * line_sigma))
weights /= 2.0
return weights


Expand All @@ -150,10 +145,13 @@ def refine_peak_centers(data, error, peaks, line_fwhm, domain=None):
line_sigma = fwhm_to_sigma(line_fwhm)

x = np.arange(len(data)) + min(domain)
best_fits_parameters = optimize_match_filter(np.hstack([peaks, np.ones(len(peaks))]), data, error,
centroiding_weights, x, args=(line_sigma,))
centers = best_fits_parameters[:len(peaks)]
return centers
best_fit_peaks = []
for peak in peaks:
window = np.logical_and(x > peak - 2 * line_sigma, x < peak + 2 * line_sigma)
best_fit_peak, = optimize_match_filter([peak], data[window], error[window],
centroiding_weights, x[window], args=(line_sigma,))
best_fit_peaks.append(best_fit_peak)
return best_fit_peaks


def correlate_peaks(peaks, linear_model, lines, match_threshold):
Expand Down Expand Up @@ -456,11 +454,11 @@ def do_stage(self, image):
image.is_bad = True
return image

peaks = refine_peak_centers(flux_1d, flux_1d_error, peaks,
peaks = refine_peak_centers(flux_1d, flux_1d_error, peaks[successful_matches],
self.INITIAL_LINE_FWHMS[image.site][order],
domain=image.orders.domains[i])

initial_solution = estimate_distortion(peaks[successful_matches],
initial_solution = estimate_distortion(peaks,
corresponding_lines[successful_matches],
image.orders.domains[i],
order=self.FIT_ORDERS[order])
Expand Down

0 comments on commit e8ca8df

Please sign in to comment.