-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #114 from Living-with-machines/develop
v1.3.0
- Loading branch information
Showing
23 changed files
with
6,036 additions
and
5,398 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: UTF-8 -*- | ||
import pytest | ||
|
||
|
||
def test_pipeline_ngram(): | ||
|
||
from DeezyMatch import train as dm_train | ||
# train a new model | ||
dm_train(input_file_path="./inputs/input_dfm_pytest_002.yaml", | ||
dataset_path="./dataset/dataset-string-matching_train.txt", | ||
model_name="test002") | ||
|
||
from DeezyMatch import finetune as dm_finetune | ||
# fine-tune a pretrained model stored at pretrained_model_path and pretrained_vocab_path | ||
dm_finetune(input_file_path="./inputs/input_dfm_pytest_002.yaml", | ||
dataset_path="./dataset/dataset-string-matching_train.txt", | ||
model_name="finetuned_test002", | ||
pretrained_model_path="./models/test002/test002.model", | ||
pretrained_vocab_path="./models/test002/test002.vocab") | ||
|
||
from DeezyMatch import inference as dm_inference | ||
|
||
# model inference using a model stored at pretrained_model_path and pretrained_vocab_path | ||
dm_inference(input_file_path="./inputs/input_dfm_pytest_002.yaml", | ||
dataset_path="./dataset/dataset-string-matching_train.txt", | ||
pretrained_model_path="./models/finetuned_test002/finetuned_test002.model", | ||
pretrained_vocab_path="./models/finetuned_test002/finetuned_test002.vocab") | ||
|
||
|
||
from DeezyMatch import inference as dm_inference | ||
|
||
# generate vectors for queries (specified in dataset_path) | ||
# using a model stored at pretrained_model_path and pretrained_vocab_path | ||
dm_inference(input_file_path="./inputs/input_dfm_pytest_002.yaml", | ||
dataset_path="./dataset/dataset-string-matching_train.txt", | ||
pretrained_model_path="./models/finetuned_test002/finetuned_test002.model", | ||
pretrained_vocab_path="./models/finetuned_test002/finetuned_test002.vocab", | ||
inference_mode="vect", | ||
scenario="queries_002/test") | ||
|
||
from DeezyMatch import inference as dm_inference | ||
|
||
# generate vectors for candidates (specified in dataset_path) | ||
# using a model stored at pretrained_model_path and pretrained_vocab_path | ||
dm_inference(input_file_path="./inputs/input_dfm_pytest_002.yaml", | ||
dataset_path="./dataset/dataset-string-matching_train.txt", | ||
pretrained_model_path="./models/finetuned_test002/finetuned_test002.model", | ||
pretrained_vocab_path="./models/finetuned_test002/finetuned_test002.vocab", | ||
inference_mode="vect", | ||
scenario="candidates_002/test") | ||
|
||
|
||
from DeezyMatch import combine_vecs | ||
|
||
# combine vectors stored in queries/test and save them in combined/queries_test | ||
combine_vecs(rnn_passes=['fwd', 'bwd'], | ||
input_scenario='queries_002/test', | ||
output_scenario='combined_002/queries_test', | ||
print_every=10) | ||
|
||
from DeezyMatch import combine_vecs | ||
|
||
# combine vectors stored in candidates/test and save them in combined/candidates_test | ||
combine_vecs(rnn_passes=['fwd', 'bwd'], | ||
input_scenario='candidates_002/test', | ||
output_scenario='combined_002/candidates_test', | ||
print_every=10) | ||
|
||
from DeezyMatch import candidate_ranker | ||
|
||
# Select candidates based on L2-norm distance (aka faiss distance): | ||
# find candidates from candidate_scenario | ||
# for queries specified in query_scenario | ||
candidates_pd = \ | ||
candidate_ranker(query_scenario="./combined_002/queries_test", | ||
candidate_scenario="./combined_002/candidates_test", | ||
ranking_metric="faiss", | ||
selection_threshold=5., | ||
num_candidates=2, | ||
search_size=10, | ||
output_path="ranker_results_002/test_candidates_deezymatch", | ||
pretrained_model_path="./models/finetuned_test002/finetuned_test002.model", | ||
pretrained_vocab_path="./models/finetuned_test002/finetuned_test002.vocab", | ||
number_test_rows=5) | ||
|
||
for s in candidates_pd["query"].to_list(): | ||
assert candidates_pd.loc[candidates_pd["query"] == s]["faiss_distance"].iloc[0][s] == pytest.approx(0.0) | ||
|
Oops, something went wrong.