Examples for modelDown
A use case for 4 different classification models with 7 features: 4 numerical and 3 categorical.
Find the website here: https://mi2datalab.github.io/modelDown_example/
Here is the script:
# Prepare the data
library("DALEX")
titanic <- na.omit(titanic)
# Random Forest model
library("randomForest")
model_titanic_rf <- randomForest(survived == "yes" ~ gender + age + class + embarked +
fare + sibsp + parch, data = titanic[,-5])
explain_titanic_rf <- explain(model_titanic_rf,
data = titanic[,-c(9,5)],
y = titanic$survived == "yes",
label = "Random Forest v7")
# SVM model
library("e1071")
model_titanic_svm <- svm(survived == "yes" ~ class + gender + age + sibsp +
parch + fare + embarked, data = titanic[,-5],
type = "C-classification", probability = TRUE)
explain_titanic_svm <- explain(model_titanic_svm, data = titanic[,-c(9,5)],
y = titanic$survived == "yes",
label = "Support Vector Machines")
# GBM model
library("gbm")
model_titanic_gbm <- gbm(survived == "yes" ~ class + gender + age + sibsp +
parch + fare + embarked, data = titanic[,-5], n.trees = 15000)
explain_titanic_gbm <- explain(model_titanic_gbm, data = titanic[,-c(9,5)],
y = titanic$survived == "yes",
predict_function = function(m,x) predict(m, x, n.trees = 15000, type = "response"),
label = "Generalized Boosted Models")
# k-NN model
library("caret")
model_titanic_knn <- knn3(survived == "yes" ~ class + gender + age + sibsp +
parch + fare + embarked, data = titanic[,-5], k = 5)
explain_titanic_knn <- explain(model_titanic_knn, data = titanic[,-c(9,5)],
y = titanic$survived == "yes",
predict_function = function(m,x) predict(m, x)[,2],
label = "k-Nearest Neighbours")
# Website generation
modelDown(explain_titanic_rf, explain_titanic_gbm,
explain_titanic_svm, explain_titanic_knn,
device = "svg",
remote_repository_path = "MI2DataLab/modelDown_example/docs",
output_folder = "modelDown_Titanic_example")